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Linear Hypothesis Classes
Lecturer: Ofer Dekel Scribe: Yanping Huang

1 Review: Rademacher’s Complexity

Theorem 1. Let the loss function l ∈ [0, c], and S be the sample set drawn from distribution D with |S| = m.
Then ∀δ > 0 and ∀h ∈ H, with probability at least 1− δ, we have

|l(h;S)− l(h;D)| ≤ ε(δ) = R(l ◦ H) + c

√
log(1/δ)

2m
(1)

where the Rademacher complexity

Rm(l ◦ H) =
2

m
ESE~σ[max

h∈H

m∑
i=1

σil(h; (xi, yi))] (2)

1.1 Remarks on Rademacher’s complexity

• Since σi ∈ {±1}, we can rewrite the Rademacher’s complexity as:

Rm(l ◦ H) =
2

m
ESE~σ[max

h∈H
(

∑
i∈{i:σi=1}

li −
∑

i∈{i:σi=−1}

li)]

The random vector ~σ partitioned the sample S into two disjoint sets. The Rademacher’s complexity
estimates how much difference between the total losses of two random-assigned disjoint sets can a
hypothesis make.

• We can rewrite ~l = {l1, . . . , lm}. Then the inner product < ~σ,~l > is a measurement of the correlation

between two vectors ~σ and ~l. The Rademacher’s complexity measures how well correlated the most-
correlated hypothesis is to a random labeling of points in S.

• When the loss function is a constant independent of examples, l = 1. We have E~σ
∑
i σi × 1 = 0. In

this case, Rm(l ◦ H) = 0.

• If H = {h}, then Rm(l ◦ H) = 0

• In literature, sometimes the definition of Rademacher’s complexity is written as

Rorim (l ◦ H) =
2

m
ESE~σ[ max

h inH

∣∣∣∣∣
m∑
i=1

σili

∣∣∣∣∣] (3)

However, this definition is inferior since it is a higher upper bound than the definition in Eq 2. In some
special cases such as H = {h} and l = 1, Rorim (l ◦ H) > 0. And the absolute value in the definition is
generally harder to work with.

• Gaussian complexity is a similar complexity with similar physical meanings, and can be obtained from
the previous complexity using with σi ∼ N(0, 1).
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1.2 Special Case: Binary Classification

In this case, y ∈ {+1,−1}, l is 0–1 loss. ~σ = {σ1, . . . , σm} is a random vector with Pr(σi = 1) with
probability 1/2, and Pr(σi = 0) = 0 with probability 1/2. S ′ = {(xi, σi)}mi=1. Then ∀δ > 0, with probability

at least 1− δ, we have R̂m(l ◦ H,S) ≤ 1− 2 minh∈H l(h;S ′).
Note that R̂m(l ◦ H,S) becomes minimum when l(h̄;S ′) = 1/2 for some h̄ ∈ H. That means that h̄ can

only predict random labels with probability 1/2. In the worse case where R̂m(l ◦ H,S) becomes maximum,
we have l(h̄,S ′) = 0, when h̄ can perfectly predict any random labels. In the average case, we expect a
“good” hypothesis class H has the property that R̂m(l ◦ H,S) ∼ O( 1

m ).

2 Linear hypothesis classes

In these classes, the hypotheses are parametrized by a linear vector w such that hw(x) =< w, x > where
w ∈ Rn and x ∈ Rn.

• Regression problems, y ∈ R. The loss function is a function of the difference between prediction and y:
l(h; (x, y)) = l(h(x)− y). For square loss, l(h; (x, y)) = (h(x)− y)2. In general l(h; (x, y)) = |h(x)− y|p
for p > 0.

• Confidence rated binary classification (margin based confidence). Here y ∈ R, sign(h(x)) represents
the binary label of the example x, and |h(x)| represents the corresponding confidence.

• Binary classification y = {+1,−1}. In this case, the loss function l(h(x)y) is in general a function of
h(x)y. Some popular choices of loss functions are:

0–1 loss I{h(x)6=y}

Hinge loss [1− h(x)y]+

Exponential Loss(Ada Boost) exp(−h(x)y)

Logistic loss log(c+ exp(−yh(x)))
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To help our analysis, the desired loss function should 1) be not less than the 0–1 loss function, 2) be
convex, 3) and be Lipschitz. A function l(.) is called λ−Lipschitz iff |l(α)− l(β)| ≤ λ|α− β|.

Theorem 2. If the loss function is λ−Lipschitz, we have

Rm(l ◦ H) ≤ λRm(H) (4)

(5)

where

Rm(H) =
2

m
E~σES max

h∈H

m∑
i=1

σih(xi) (6)

The same inequality also holds for R̂m(l ◦ H,S)

Theorem 2 can be shown be the following lemma,

Lemma 3. Let gi(θ) and fi(θ) be sets of functions such that ∀i, θ, θ′,

|gi(θ)− gi(θ′)| ≤ |fi(θ)− fi(θ′)| (7)

Then for any function c(x, θ) and any distribution over X,

E~σEx sup
θ

[c(x, θ) +
∑
i

σigi(θ)] ≤ E~σEx sup
θ

[c(x, θ) +
∑
i

σifi(θ)] (8)

Proof. We are going to show it by induction. The lemma obviously holds for n = 0. Then suppose the
lemma holds for n = k, for n = k + 1:

Eσ1...σk+1
Ex sup

θ
[c(x, θ) +

k+1∑
i=1

σigi(θ)]

= Eσ1...σk
Ex sup

θ1,θ2

[
c(x, θ1) + c(x, θ2)

2
+

k∑
i=1

σi(
gi(θ1) + gi(θ2)

2
) +

gk+1(θ1)− gk+1(θ2)

2
]

= Eσ1...σk
Ex sup

θ1,θ2

[
c(x, θ1) + c(x, θ2)

2
+

k∑
i=1

σi(
gi(θ1) + gi(θ2)

2
) +
|gk+1(θ1)− gk+1(θ2)|

2
]

≤ Eσ1...σk
Ex sup

θ1,θ2

[
c(x, θ1) + c(x, θ2)

2
+

k∑
i=1

σi(
gi(θ1) + gi(θ2)

2
) +
|fk+1(θ1)− fk+1(θ2)|

2
]

= Eσ1...σk
Ex sup

θ1,θ2

[
c(x, θ1) + c(x, θ2)

2
+

k∑
i=1

σi(
gi(θ1) + gi(θ2)

2
) +

fk+1(θ1)− fk+1(θ2)

2
]

= Eσ1...σk+1
Ex sup

θ
[c(x, θ) +

k∑
i=1

σigi(θ)) + σk+1fk+1(θ)]

≤ Eσ1...σk+1
Ex sup

θ
[c(x, θ) + σk+1fk+1(θ) +

k∑
i=1

σifi(θ))]

Let c(x, θ) = 0, gi(θ) = l(hw(x)y) and fi(θ) = λhw(x)y, we apply the above lemma and prove
Theorem 2
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Theorem 4. A linear hypothesis class H such that ∀h ∈ H, hw(x) =< w, x >∈ [−1,+1], where
w ∈ Rn ‖w‖2 ≤ B, and x ∈ Rn, ‖x‖2 ≤ X , we have

R̂m(H,S) ≤ 2BX√
m

(9)

Proof.

R̂m(H,S) =
2

m
E~σ max

h∈H

m∑
i=1

σih(xi)

=
2

m
E~σ max
‖w‖2≤B

m∑
i=1

σi < w, xi >

=
2

m
E~σ max
‖w‖2≤B

< w,
m∑
i=1

σixi >

≤ 2

m
E~σ max
‖w‖2≤B

‖w‖

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥ (CauchySchwarz inequality)

=
2B
m

E~σ

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
=

2B
m

E~σ

√√√√ m∑
i=1

m∑
j=1

σiσj < xi, xj > (linearity of inner product)

≤ 2B
m

√
E
∑
ij

σiσj < xi, xj > (Jensen’s inequality)

=
2B
m

√∑
ij

< xi, xj > Eσiσj

≤ 2B
m

√∑
i

‖xi‖2

≤ 2B
m

√
mX

=
2BX√
m
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