CSE522, Winter 2011, Learning Theory	Lecture 6-01/31/2011
Linear Hypothesis Classes	
Lecturer: Ofer Dekel	

1 Review: Rademacher's Complexity

Theorem 1. Let the loss function $l \in[0, c]$, and \mathcal{S} be the sample set drawn from distribution \mathcal{D} with $|\mathcal{S}|=m$. Then $\forall \delta>0$ and $\forall h \in \mathcal{H}$, with probability at least $1-\delta$, we have

$$
\begin{equation*}
|l(h ; \mathcal{S})-l(h ; \mathcal{D})| \leq \epsilon(\delta)=\mathcal{R}(l \circ \mathcal{H})+c \sqrt{\frac{\log (1 / \delta)}{2 m}} \tag{1}
\end{equation*}
$$

where the Rademacher complexity

$$
\begin{equation*}
\mathcal{R}_{m}(l \circ \mathcal{H})=\frac{2}{m} \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} l\left(h ;\left(x_{i}, y_{i}\right)\right)\right] \tag{2}
\end{equation*}
$$

1.1 Remarks on Rademacher's complexity

- Since $\sigma_{i} \in\{ \pm 1\}$, we can rewrite the Rademacher's complexity as:

$$
\mathcal{R}_{m}(l \circ \mathcal{H})=\frac{2}{m} \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \in \mathcal{H}}\left(\sum_{i \in\left\{i: \sigma_{i}=1\right\}} l_{i}-\sum_{i \in\left\{i: \sigma_{i}=-1\right\}} l_{i}\right)\right]
$$

The random vector $\vec{\sigma}$ partitioned the sample \mathcal{S} into two disjoint sets. The Rademacher's complexity estimates how much difference between the total losses of two random-assigned disjoint sets can a hypothesis make.

- We can rewrite $\vec{l}=\left\{l_{1}, \ldots, l_{m}\right\}$. Then the inner product $\langle\vec{\sigma}, \vec{l}\rangle$ is a measurement of the correlation between two vectors $\vec{\sigma}$ and \vec{l}. The Rademacher's complexity measures how well correlated the mostcorrelated hypothesis is to a random labeling of points in \mathcal{S}.
- When the loss function is a constant independent of examples, $l=1$. We have $\mathrm{E}_{\vec{\sigma}} \sum_{i} \sigma_{i} \times 1=0$. In this case, $\mathcal{R}_{m}(l \circ \mathcal{H})=0$.
- If $\mathcal{H}=\{h\}$, then $\mathcal{R}_{m}(l \circ \mathcal{H})=0$
- In literature, sometimes the definition of Rademacher's complexity is written as

$$
\begin{equation*}
\mathcal{R}_{m}^{\text {ori }}(l \circ \mathcal{H})=\frac{2}{m} \mathrm{E}_{\mathcal{S}} \mathrm{E}_{\vec{\sigma}}\left[\max _{h \text { inH }}\left|\sum_{i=1}^{m} \sigma_{i} l_{i}\right|\right] \tag{3}
\end{equation*}
$$

However, this definition is inferior since it is a higher upper bound than the definition in Eq 2. In some special cases such as $\mathcal{H}=\{h\}$ and $l=1, \mathcal{R}_{m}^{\text {ori }}(l \circ \mathcal{H})>0$. And the absolute value in the definition is generally harder to work with.

- Gaussian complexity is a similar complexity with similar physical meanings, and can be obtained from the previous complexity using with $\sigma_{i} \sim N(0,1)$.

1.2 Special Case: Binary Classification

In this case, $y \in\{+1,-1\}, l$ is $0-1$ loss. $\vec{\sigma}=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$ is a random vector with $\operatorname{Pr}\left(\sigma_{i}=1\right)$ with probability $1 / 2$, and $\operatorname{Pr}\left(\sigma_{i}=0\right)=0$ with probability $1 / 2 . \mathcal{S}^{\prime}=\left\{\left(x_{i}, \sigma_{i}\right)\right\}_{i=1}^{m}$. Then $\forall \delta>0$, with probability at least $1-\delta$, we have $\hat{\mathcal{R}}_{m}(l \circ \mathcal{H}, \mathcal{S}) \leq 1-2 \min _{h \in \mathcal{H}} l\left(h ; \mathcal{S}^{\prime}\right)$.

Note that $\hat{\mathcal{R}}_{m}(l \circ \mathcal{H}, \mathcal{S})$ becomes minimum when $l\left(\bar{h} ; \mathcal{S}^{\prime}\right)=1 / 2$ for some $\bar{h} \in \mathcal{H}$. That means that \bar{h} can only predict random labels with probability $1 / 2$. In the worse case where $\hat{\mathcal{R}}_{m}(l \circ \mathcal{H}, \mathcal{S})$ becomes maximum, we have $l\left(\bar{h}, \mathcal{S}^{\prime}\right)=0$, when \bar{h} can perfectly predict any random labels. In the average case, we expect a "good" hypothesis class \mathcal{H} has the property that $\hat{\mathcal{R}}_{m}(l \circ \mathcal{H}, \mathcal{S}) \sim O\left(\frac{1}{m}\right)$.

2 Linear hypothesis classes

In these classes, the hypotheses are parametrized by a linear vector w such that $h_{w}(x)=<w, x>$ where $w \in \mathbb{R}^{n}$ and $x \in \mathbb{R}^{n}$.

- Regression problems, $y \in \mathbb{R}$. The loss function is a function of the difference between prediction and y : $l(h ;(x, y))=l(h(x)-y)$. For square loss, $l(h ;(x, y))=(h(x)-y)^{2}$. In general $l(h ;(x, y))=|h(x)-y|^{p}$ for $p>0$.
- Confidence rated binary classification (margin based confidence). Here $y \in \mathbb{R}, \operatorname{sign}(h(x))$ represents the binary label of the example x, and $|h(x)|$ represents the corresponding confidence.
- Binary classification $y=\{+1,-1\}$. In this case, the loss function $l(h(x) y)$ is in general a function of $h(x) y$. Some popular choices of loss functions are:

To help our analysis, the desired loss function should 1) be not less than the $0-1$ loss function, 2) be convex, 3) and be Lipschitz. A function $l($.$) is called \lambda$-Lipschitz iff $|l(\alpha)-l(\beta)| \leq \lambda|\alpha-\beta|$.

Theorem 2. If the loss function is λ-Lipschitz, we have

$$
\begin{equation*}
\mathcal{R}_{m}(l \circ \mathcal{H}) \leq \lambda \mathcal{R}_{m}(\mathcal{H}) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{R}_{m}(\mathcal{H})=\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \mathrm{E}_{\mathcal{S}} \max _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} h\left(x_{i}\right) \tag{6}
\end{equation*}
$$

The same inequality also holds for $\hat{\mathcal{R}}_{m}(l \circ \mathcal{H}, \mathcal{S})$
Theorem 2 can be shown be the following lemma,
Lemma 3. Let $g_{i}(\theta)$ and $f_{i}(\theta)$ be sets of functions such that $\forall i, \theta, \theta^{\prime}$,

$$
\begin{equation*}
\left|g_{i}(\theta)-g_{i}\left(\theta^{\prime}\right)\right| \leq\left|f_{i}(\theta)-f_{i}\left(\theta^{\prime}\right)\right| \tag{7}
\end{equation*}
$$

Then for any function $c(x, \theta)$ and any distribution over \mathbb{X},

$$
\begin{equation*}
\mathrm{E}_{\vec{\sigma}} \mathrm{E}_{x} \sup _{\theta}\left[c(x, \theta)+\sum_{i} \sigma_{i} g_{i}(\theta)\right] \leq \mathrm{E}_{\vec{\sigma}} \mathrm{E}_{x} \sup _{\theta}\left[c(x, \theta)+\sum_{i} \sigma_{i} f_{i}(\theta)\right] \tag{8}
\end{equation*}
$$

Proof. We are going to show it by induction. The lemma obviously holds for $n=0$. Then suppose the lemma holds for $n=k$, for $n=k+1$:

$$
\begin{aligned}
& \mathrm{E}_{\sigma_{1} \ldots \sigma_{k+1}} \mathrm{E}_{x} \sup _{\theta}\left[c(x, \theta)+\sum_{i=1}^{k+1} \sigma_{i} g_{i}(\theta)\right] \\
= & \mathrm{E}_{\sigma_{1} \ldots \sigma_{k}} \mathrm{E}_{x} \sup _{\theta_{1}, \theta_{2}}\left[\frac{c\left(x, \theta_{1}\right)+c\left(x, \theta_{2}\right)}{2}+\sum_{i=1}^{k} \sigma_{i}\left(\frac{g_{i}\left(\theta_{1}\right)+g_{i}\left(\theta_{2}\right)}{2}\right)+\frac{g_{k+1}\left(\theta_{1}\right)-g_{k+1}\left(\theta_{2}\right)}{2}\right] \\
= & \mathrm{E}_{\sigma_{1} \ldots \sigma_{k}} \mathrm{E}_{x} \sup _{\theta_{1}, \theta_{2}}\left[\frac{c\left(x, \theta_{1}\right)+c\left(x, \theta_{2}\right)}{2}+\sum_{i=1}^{k} \sigma_{i}\left(\frac{g_{i}\left(\theta_{1}\right)+g_{i}\left(\theta_{2}\right)}{2}\right)+\frac{\left|g_{k+1}\left(\theta_{1}\right)-g_{k+1}\left(\theta_{2}\right)\right|}{2}\right] \\
\leq & \mathrm{E}_{\sigma_{1} \ldots \sigma_{k}} \mathrm{E}_{x} \sup _{\theta_{1}, \theta_{2}}\left[\frac{c\left(x, \theta_{1}\right)+c\left(x, \theta_{2}\right)}{2}+\sum_{i=1}^{k} \sigma_{i}\left(\frac{g_{i}\left(\theta_{1}\right)+g_{i}\left(\theta_{2}\right)}{2}\right)+\frac{\left|f_{k+1}\left(\theta_{1}\right)-f_{k+1}\left(\theta_{2}\right)\right|}{2}\right] \\
= & \mathrm{E}_{\sigma_{1} \ldots \sigma_{k}} \mathrm{E}_{x} \sup _{\theta_{1}, \theta_{2}}\left[\frac{c\left(x, \theta_{1}\right)+c\left(x, \theta_{2}\right)}{2}+\sum_{i=1}^{k} \sigma_{i}\left(\frac{g_{i}\left(\theta_{1}\right)+g_{i}\left(\theta_{2}\right)}{2}\right)+\frac{f_{k+1}\left(\theta_{1}\right)-f_{k+1}\left(\theta_{2}\right)}{2}\right] \\
= & \left.\mathrm{E}_{\sigma_{1} \ldots \sigma_{k+1}} \mathrm{E}_{x} \sup _{\theta}\left[c(x, \theta)+\sum_{i=1}^{k} \sigma_{i} g_{i}(\theta)\right)+\sigma_{k+1} f_{k+1}(\theta)\right] \\
\leq & \left.\mathrm{E}_{\sigma_{1} \ldots \sigma_{k+1}} \mathrm{E}_{x} \sup _{\theta}\left[c(x, \theta)+\sigma_{k+1} f_{k+1}(\theta)+\sum_{i=1}^{k} \sigma_{i} f_{i}(\theta)\right)\right]
\end{aligned}
$$

Let $c(x, \theta)=0, g_{i}(\theta)=l\left(h_{w}(x) y\right)$ and $f_{i}(\theta)=\lambda h_{w}(x) y$, we apply the above lemma and prove Theorem 2

Theorem 4. A linear hypothesis class \mathcal{H} such that $\forall h \in \mathcal{H}, h_{w}(x)=<w, x>\in[-1,+1]$, where $w \in \mathbb{R}^{n}\|w\|_{2} \leq \mathcal{B}$, and $x \in \mathbb{R}^{n},\|x\|_{2} \leq \mathcal{X}$, we have

$$
\begin{equation*}
\hat{\mathcal{R}}_{m}(\mathcal{H}, \mathcal{S}) \leq \frac{2 \mathcal{B} \mathcal{X}}{\sqrt{m}} \tag{9}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\hat{\mathcal{R}}_{m}(\mathcal{H}, \mathcal{S}) & =\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} h\left(x_{i}\right) \\
& \left.=\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{\|w\|_{2} \leq \mathcal{B}} \sum_{i=1}^{m} \sigma_{i}<w, x_{i}\right\rangle \\
& \left.=\frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{\|w\|_{2} \leq \mathcal{B}}<w, \sum_{i=1}^{m} \sigma_{i} x_{i}\right\rangle \\
& \leq \frac{2}{m} \mathrm{E}_{\vec{\sigma}} \max _{\|w\|_{2} \leq \mathcal{B}}\|w\|\left\|\sum_{i=1}^{m} \sigma_{i} x_{i}\right\| \quad \text { (CauchySchwarz inequality) } \\
& =\frac{2 \mathcal{B}}{m} \mathrm{E}_{\vec{\sigma}}\left\|\sum_{i=1}^{m} \sigma_{i} x_{i}\right\| \\
& =\frac{2 \mathcal{B}}{m} \mathrm{E}_{\vec{\sigma}} \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} \sigma_{i} \sigma_{j}<x_{i}, x_{j}>} \quad \text { (linearity of inner product) } \\
& \leq \frac{2 \mathcal{B}}{m} \sqrt{\mathrm{E} \sum_{i j} \sigma_{i} \sigma_{j}<x_{i}, x_{j}>} \\
& =\frac{2 \mathcal{B}}{m} \sqrt{\sum_{i j}<x_{i}, x_{j}>\mathrm{E}_{i} \sigma_{j}} \\
& \leq \frac{2 \mathcal{B}}{m} \sqrt{\sum_{i}\left\|x_{i}\right\|^{2}} \\
& \leq \frac{2 \mathcal{B}}{m} \sqrt{m \mathcal{X}} \\
& =\frac{2 \mathcal{B} \mathcal{X}}{\sqrt{m}}
\end{aligned}
$$

