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1 Recap

Our goal is to get uniform convergence bounds on infinite hypothesis classes. Suppose that ` ∈ [0, c]. We
have proved two main results:

1. For every δ > 0, with probability at least 1− δ, for every h ∈ H,

`(h;D) ≤ `(h;S) +Rm(` ◦H) +

√
log(1/δ)

2m
.

2. For every δ > 0, with probability at least 1− δ, for every h ∈ H,

`(h;D) ≤ `(h;S) + R̂m(` ◦H,S) + 3

√
log(1/δ)

2m
,

where

Rm(` ◦H) =
2

m
ES∼DEσ max

h∈H

m∑
i=1

σi`(h; (xi, yi))

and

σi =

{
1 w.p. 1/2

0 w.p. 1/2
.

The empirical Rademacher average, which is much more useful than the Rademacher complexity because
it does not depend on the unknown distribution, is

R̂m(` ◦H,S) =
2

m
Eσ max

h∈H

m∑
i=1

σi`(h; (xi, yi)).

2 λ-Lipschitz Loss Functions

Definition 1. The loss function ` is λ-Lipschitz if for any α and α′, |`(α)− `(α′)| ≤ λ‖α− α′‖.
Fact 2. The Hinge loss is Lipschitz everywhere. Squared error loss is Lipschitz only on a bounded domain.

Theorem 3. If ` is a λ-Lipschitz function, then Rm(` ◦H) ≤ λRm(H), where

Rm(H) =
2

m
ESEσ max

h∈H

m∑
i=1

σih(xi).

Theorem 4. More General Result: Consider sets of functions {gi(θ)}, {hi(θ)}. Assume that for every
i, θ, θ′, |gi(θ)− gi(θ′)| ≤ |hi(θ)− hi(θ′)|. Then, for any c(x, θ) and any probability distribution over X,

EσEX max
θ∈Θ

(
c(x, θ) +

n∑
i=1

σigi(θ)

)
≤ EσEX max

θ∈Θ

(
c(x, θ) +

n∑
i=1

σihi(θ)

)
.

Observation 5. This is a classic case of proving something more general in order to more easily prove a
more specific result. Suppose gi(θ) = `(yh(xi)) and hi(θ) = λh(xi). If `(h; (xi, yi)) is λ-Lipschitz in h(x)
(for any fixed y ∈ Y), then we can use Theorem 4 to prove Theorem 3.

1



3 Linear Hypothesis Classes

Linear hypothesis classes consist of hypotheses of the form hw(x) = 〈w, x〉. We can use this for confidence-
rated binary classification. For classification, we consider loss functions of the form `(yh(x)), and we want
the sign of h(x) to equal y; i.e., yh(x) > 0. For regression problems, we want h(x) to be close to y, so we
might use `(h(x)− y) = (h(x)− y)2.

3.1 Bounding the Rademacher Complexity of Linear Functions

Assume that H = {hw(·) | hw(x) = 〈w, x〉 , ‖w‖ ≤ B}. Then,

R̂m(H,S) =
2

m
Eσ max

h∈H

m∑
i=1

σih(xi)

=
2

m
Eσ max
‖w‖≤B

m∑
i=1

σi 〈w, xi〉

=
2

m
Eσ max
‖w‖≤B

〈
w,
∑
i

σixi

〉
≤ [This is an extremal case of the the Cauchy-Schwartz inequality, so we actually have equality]

≤ 2

m
Eσ max
‖w‖≤B

‖w‖

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
=

2B

m
Eσ

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
=

2B

m
Eσ

√√√√〈 m∑
i=1

σixi,

m∑
i=1

σixi

〉
= [linearity of the inner product]

=
2B

m
Eσ

√√√√ m∑
i=1

m∑
j=1

σiσj 〈xi, xj〉

≤ [Jensen’s inequality and the concavity of the square root function]

≤ 2B

m

√√√√Eσ
m∑
i=1

m∑
j=1

σiσj 〈xi, xj〉

≤ 2B

m

√√√√ m∑
i=1

m∑
j=1

〈xi, xj〉Eσσiσj .

Note that

Eσσiσj =

{
0 if i 6= j

1 if i = j
.

Hence, we have

R̂m(H,S) ≤ 2B

m

√√√√ m∑
i=1

‖xi‖2,
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and therefore, for a λ-Lipschitz loss function,

R̂m(` ◦H,S) ≤ λ2B

m

√∑
i

‖xi‖2.

Furthermore, if ‖xi‖ ≤ X for all i, then,

R̂m(H,S) ≤ 2B

m

√
mX2 =

2BX√
m
⇒ Rm(H) ≤ 2BX√

m
.

Combining this with previous results, we have that for any δ > 0, with probability at least 1− δ, (assuming
` is λ-Lipschitz, ` ∈ [0, c], D is such that ‖xi‖ ≤ X), for any w such that ‖w‖ ≤ B,

`(hw;D) ≤ `(hw;S) + λ
2BX√
m

+ c

√
log(1/δ)

2m
= `(hw;S) +O(1/

√
m).

Observation 6. Note that the dimensionality of the input space has no role in this analysis. The curse
of dimensionality has nothing to do with the dimension of the feature space, but instead, the Rademacher
complexity of the hypothesis class.

Rademacher complexity is a recent topic (mostly post-2000). Later, we will turn to “old-school” V-C
theory, from the 1990s.

4 Structural Risk Minimization

Vapnik introduced SRM in the context of V-C theory. This is the old way of talking about things. Nowadays,
we talk about regularization.

We want h ∈ H with small risk `(h;D). How do we choose H? If H ⊆ H ′, then clearly minh∈H `(h;S) ≥
minh∈H′ `(h;S). So, a bigger hypothesis class fits the data S better, but can hurt our estimation due to
overfitting.

Let H = {w | ‖w‖ ≤ 1} and H ′ = {w | ‖w‖ ≤ 2}. To be concrete, we will assume that we are dealing
with the Hinge loss, although this is not strictly necessary. Then, for any δ > 0, with probability at least
1− δ, S is such that

1. For all ‖w‖ ≤ 1, `(hw;D) ≤ `(hw, S) + λ2X√
m

+X
√

log(1/δ)
2m .

2. For all ‖w‖ ≤ 2, `(hw;D) ≤ `(hw, S) + λ4X√
m

+ 2X
√

log(1/δ)
2m .

Lemma 7.
∑∞
i=1 1/(i(i+ 1)) = 1.

Proposition 8. For all B ∈ N, for all ‖w‖ ≤ B, with probability at least 1− δ
B(B+1) ,

`(hw;D) ≤ `(hw;S) +
2λBX√

m
+BX

√
log(B(B + 1)/δ)

2m
.

Hence, for any w ∈ Rn,

`(hw;D) ≤ `(hw;S) +
2λX(‖w‖+ 1)√

m
+ (‖w‖+ 1)

√
log(B(B + 1)/δ)

2m
.
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4.1 Regularized ERM

In regularized ERM, we minimize the regularized empirical risk:

hRERM = arg min
w∈Rn

`(hw;S) + β‖w‖.

If we choose ` to be the Hinge loss and we use ‖w‖2 as our regularizer, then this reduces to the SVM. This
is the justification for SVMs, which Vapnik invented.

5 Ensemble Methods (Boosting Algorithms)

Boosting incrementally adds another hypothesis to the sum, so that at the end of the day, you end up with
h̃k =

∑k
i=1 αihi, where hi ∈ H. How does the complexity behave as you add more and more hypotheses to

the space?

Definition 9. If H is a hypothesis space, then the convex hull of H is

H =

{
k∑
i=1

αihi|k ∈ N, αi ≥ 0,

k∑
i=1

αi = 1, hi ∈ H

}
.

Theorem 10. R(H) = R(H), where H is the convex hull of H, as defined above.
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