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Vapnik-Chervonenkis Theory
Lecturer: Ofer Dekel Scribe: Amol Kapila

1 Recap

1. With probability at least 1− δ, if ` ∈ [0, c], then ∀h ∈ H, `(h;D) ≤ `(h;S) +Rm(` ◦H) + c
√

log(1/δ)
2m .

A bound like this immediately implies a bound on the excess risk of the empirical risk minimizer. We
prove this by proving a stronger, uniform bound on the excess risk across all h ∈ H.

2. With high probability, R̂m(` ◦H,S) ≈ Rm(` ◦H), where

Rm(` ◦H) =
2

m
ESEσ sup

h∈H

m∑
i=1

σi`(h; (xi, yi)).

The empirical Rademacher complexity

R̂m =
2

m
Eσ sup

h∈H

m∑
i=1

σi`(h; (xi, yi))

is the same thing without the expectation over S.

3. In the case of binary classification (Y = {1,−1}, ` = error indicator),

R̂m(` ◦H,S) = 1− 2 min
h∈H

`(h;S′),

where S′ = {(xi, σi)}mi=1 and σi = ±1 with probability 1/2 each.

4. If h : X → R, ` = `(yh(x)) or `(h(x) − y), and ` is λ-Lipschitz in h(x), then Rm(` ◦H) ≤ λRm(H).

The same property holds for the empirical Rademacher average: R̂m(` ◦H,S) ≤ λR̂m(H,S).

5. Class of linear hypotheses with norm ≤ B: H = {hw = 〈w, x〉 | ‖w‖2 ≤ B}. In this case,

R̂m(H,S) =
2B

m

√√√√ m∑
i=1

‖xi‖22.

If D is such that ‖x‖ ≤ X, then Rm(H) ≤ 2BX/
√
m.

6. If H is the convex hull of H, then Rm(H) = Rm(H). (Homework problem).

2 VC Theory

Binary Classification: Y = {1,−1}, ` is the 0-1 loss (a.k.a., error indicator loss).
VC Theory is a combinatorial theory, based on discrete math.

Observation 1. We only need to worry about Rm(H), not Rm(` ◦H), if we have 0-1 loss.

Observation 2. If S is a sample of m examples, then there are at most 2m vectors of the form (h(x1), h(x2), . . . , h(xm)).
We will explore how many ways can we label a concrete dataset.
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Fact (eα + e−α)/2 ≤ eα2/2. Proof by Taylor expansion of the exponential function.

Theorem 3. (Massart’s Finite Class Lemma) Suppose A ⊆ Rm, |A| <∞, and ∀a ∈ A, ‖a‖2 ≤ ρ. Then,

R̂m(H,S) =
2

m
Eσ max

a∈A

m∑
i=1

σiai ≤
2

m
ρ
√

2 log |A|.

Here, each a ∈ A is a vector of the form a = (h(x1), h(x2), . . . , h(xm)). So, if H can label our set in only a
finite number of ways, then the empirical Rademacher average is bounded by the expression on the right-hand
side of the inequality.

Proof. For each s > 0,

exp

(
sEσ max

a∈A

m∑
i=1

σiai

)
≤ [Jensen’s inequality and the convexity of exp(·)]

≤ E

(
exp

(
smax
a∈A

m∑
i=1

σiai

))
= [monotonicity of exp(·)]

= Eσ max
a∈A

exp

(
s

m∑
i=1

σiai

)

= Eσ max
a∈A

m∏
i=1

exp (saiσi)

≤ Eσ
∑
a∈A

m∏
i=1

exp(saiσi)

= [independence of σi’s]

=
∑
a∈A

m∏
i=1

Eσi exp (saiσi)

=
∑
a∈A

m∏
i=1

esai + e−sai

2

≤ [fact stated above]

≤
∑
a∈A

m∏
i=1

exp

(
(sai)

2

2

)
=

∑
a∈A

exp

(
s2

2
‖a‖2

)
≤ |A| exp

(
s2ρ2

2

)
.

Hence, we can conclude that

Eσ max
a∈A

m∑
i=1

σiai ≤
1

s
log

(
|A| exp

(
s2ρ2

2

))
=

log |A|
s

+
sρ2

2
.

Plug in s =
√

2 log |A|/ρ to get

2

m
Eσ max

a∈A

m∑
i=1

σiai ≤
2

m
ρ
√

2 log |A|.
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Observation 4. So, we now have a bound on the empirical Rademacher average. Basically, to bound the
empirical Rademacher average, we want to limit the size of |A|.

Definition 5. The growth function of H is defined as gH(m) = maxS |{(h(x1), . . . , h(xm))}h∈H |. Because
we have a set, labelings do not get counted twice. Note that gH(m) ≤ 2m.

Fact 6. We can restate the result in Theorem 3 in terms of the growth function as follows: If H is a
hypothesis space of binary classifiers, then

R(H) ≤ 2

m

√
2 log gH(m)

√
m =

2√
m

√
2 log gH(m).

So, for all S,

R̂(H,S) ≤ 2

√
2 log gH(m)

m
.

Observation 7. If gH(m) = 2m, the bound is a constant, not diminishing as O(1/
√
m).

3 Examples

If H is a hypothesis class of binary classifiers, in how many different ways can H label S? This is moving
from linear algebra to combinatorics.

Example 1 H = linear classifiers in R2. If m = 2, then gH(m) = 4 = 2m. The figures below provide the
justification for this.

+

+

−

−
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Example 2 H = axis-parallel boxes in R2.

+−

An example of an axis-parallel box. Points inside the box are labeled positive, and points outside the box
are labeled negative.

If m = 1, then clearly gH(m) = 2 = 2m. If m = 4, then gH(m) = 16 = 2m, as show using the figures
below. Each figure abstractly represents one or more possible labelings (the multiplicity is shown as kx,
where k is the multiplicity).
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− −

2x

One can also show that gH(5) = 31 < 25.

Definition 8. If H can label S in all 2m ways (m = |S|), then we say that H shatters S. So, we say that
axis-parallel boxes shatter 4 points, but not 5.

Definition 9. The VC Dimension of a class H is V Cdim(H) = max{|S| | H shatters S}.
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Example 1 H = intervals in R. gH(1) = 2 = 21. gH(2) = 4 = 22. gH(3) < 23, so H cannot shatter 3
points, as the example below shows.

+ +−

A labeling of three points in R that cannot be generated by intervals in R.

4 Useful Lemmas

Lemma 10. (Sauer) Let H be a hypothesis class of binary classifiers with V Cdim(H) = d. Then,

gH(m) ≤
d∑
i=0

(
m

i

)
= Φd(m).

Lemma 11. (Stirling)

Φd(m) ≤
(em
d

)d
.

Proof. (
d

m

)d
Φd(m) =

(
d

m

)d d∑
i=0

(
m

i

)

≤
d∑
i=0

(
d

m

)i(
m

i

)

≤
m∑
i=0

(
d

m

)i(
m

i

)
= [Binomial Theorem]

=

(
1 +

d

m

)m
≤ ed.

Hence,
d∑
i=0

(
m

i

)
≤
(em
d

)d
.
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