CSE522, Winter 2011, Learning Theory	Lecture 8-01/27/2011
Vapnik-Chervonenkis Theory	
Lecturer: Ofer Dekel	Scribe: Amol Kapila

1 Recap

1. With probability at least $1-\delta$, if $\ell \in[0, c]$, then $\forall h \in H, \ell(h ; \mathcal{D}) \leq \ell(h ; S)+R_{m}(\ell \circ H)+c \sqrt{\frac{\log (1 / \delta)}{2 m}}$. A bound like this immediately implies a bound on the excess risk of the empirical risk minimizer. We prove this by proving a stronger, uniform bound on the excess risk across all $h \in H$.
2. With high probability, $\widehat{R}_{m}(\ell \circ H, S) \approx R_{m}(\ell \circ H)$, where

$$
R_{m}(\ell \circ H)=\frac{2}{m} \mathbb{E}_{S} \mathbb{E}_{\sigma} \sup _{h \in H} \sum_{i=1}^{m} \sigma_{i} \ell\left(h ;\left(x_{i}, y_{i}\right)\right)
$$

The empirical Rademacher complexity

$$
\widehat{R}_{m}=\frac{2}{m} \mathbb{E}_{\sigma} \sup _{h \in H} \sum_{i=1}^{m} \sigma_{i} \ell\left(h ;\left(x_{i}, y_{i}\right)\right)
$$

is the same thing without the expectation over S.
3. In the case of binary classification $(\mathcal{Y}=\{1,-1\}, \ell=$ error indicator $)$,

$$
\widehat{R}_{m}(\ell \circ H, S)=1-2 \min _{h \in H} \ell\left(h ; S^{\prime}\right),
$$

where $S^{\prime}=\left\{\left(x_{i}, \sigma_{i}\right)\right\}_{i=1}^{m}$ and $\sigma_{i}= \pm 1$ with probability $1 / 2$ each.
4. If $h: X \rightarrow \mathbb{R}, \ell=\ell(y h(x))$ or $\ell(h(x)-y)$, and ℓ is λ-Lipschitz in $h(x)$, then $R_{m}(\ell \circ H) \leq \lambda R_{m}(H)$. The same property holds for the empirical Rademacher average: $\widehat{R}_{m}(\ell \circ H, S) \leq \lambda \widehat{R}_{m}(H, S)$.
5. Class of linear hypotheses with norm $\leq B: H=\left\{h_{w}=\langle w, x\rangle \mid\|w\|_{2} \leq B\right\}$. In this case,

$$
\widehat{R}_{m}(H, S)=\frac{2 B}{m} \sqrt{\sum_{i=1}^{m}\left\|x_{i}\right\|_{2}^{2}}
$$

If \mathcal{D} is such that $\|x\| \leq X$, then $R_{m}(H) \leq 2 B X / \sqrt{m}$.
6. If \bar{H} is the convex hull of H, then $R_{m}(\bar{H})=R_{m}(H)$. (Homework problem).

2 VC Theory

Binary Classification: $\mathcal{Y}=\{1,-1\}, \ell$ is the $0-1$ loss (a.k.a., error indicator loss).
VC Theory is a combinatorial theory, based on discrete math.
Observation 1. We only need to worry about $R_{m}(H)$, not $R_{m}(\ell \circ H)$, if we have 0-1 loss.
Observation 2. If S is a sample of m examples, then there are at most 2^{m} vectors of the form $\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{m}\right)\right)$. We will explore how many ways can we label a concrete dataset.

Fact $\quad\left(e^{\alpha}+e^{-\alpha}\right) / 2 \leq e^{\alpha^{2} / 2}$. Proof by Taylor expansion of the exponential function.
Theorem 3. (Massart's Finite Class Lemma) Suppose $A \subseteq \mathbb{R}^{m},|A|<\infty$, and $\forall a \in A$, $\|a\|_{2} \leq \rho$. Then,

$$
\widehat{R}_{m}(H, S)=\frac{2}{m} \mathbb{E}_{\sigma} \max _{a \in A} \sum_{i=1}^{m} \sigma_{i} a_{i} \leq \frac{2}{m} \rho \sqrt{2 \log |A|}
$$

Here, each $a \in A$ is a vector of the form $a=\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{m}\right)\right)$. So, if H can label our set in only a finite number of ways, then the empirical Rademacher average is bounded by the expression on the right-hand side of the inequality.
Proof. For each $s>0$,

$$
\begin{aligned}
\exp \left(s \mathbb{E}_{\sigma} \max _{a \in A} \sum_{i=1}^{m} \sigma_{i} a_{i}\right) & \leq[\text { Jensen's inequality and the convexity of } \exp (\cdot)] \\
& \leq \mathbb{E}\left(\exp \left(s \max _{a \in A} \sum_{i=1}^{m} \sigma_{i} a_{i}\right)\right) \\
& =[\text { monotonicity of } \exp (\cdot)] \\
& =\mathbb{E}_{\sigma} \max _{a \in A} \exp \left(s \sum_{i=1}^{m} \sigma_{i} a_{i}\right) \\
& =\mathbb{E}_{\sigma} \max _{a \in A} \prod_{i=1}^{m} \exp \left(s a_{i} \sigma_{i}\right) \\
& \leq \mathbb{E}_{\sigma} \sum_{a \in A} \prod_{i=1}^{m} \exp \left(s a_{i} \sigma_{i}\right) \\
& =\left[\operatorname{independence~of~} \sigma_{i} ' s\right] \\
& =\sum_{a \in A} \prod_{i=1}^{m} \mathbb{E}_{\sigma_{i}} \exp \left(s a_{i} \sigma_{i}\right) \\
& =\sum_{a \in A} \prod_{i=1}^{m} \frac{e^{s a_{i}}+e^{-s a_{i}}}{2} \\
& \leq[\text { fact } \operatorname{stated} \operatorname{above}] \\
& \leq \sum_{a \in A} \prod_{i=1}^{m} \exp \left(\frac{\left(s a_{i}\right)^{2}}{2}\right) \\
& =\sum_{a \in A} \exp \left(\frac{s^{2}}{2}\|a\|^{2}\right) \\
& \leq|A| \exp \left(\frac{s^{2} \rho^{2}}{2}\right)
\end{aligned}
$$

Hence, we can conclude that

$$
\mathbb{E}_{\sigma} \max _{a \in A} \sum_{i=1}^{m} \sigma_{i} a_{i} \leq \frac{1}{s} \log \left(|A| \exp \left(\frac{s^{2} \rho^{2}}{2}\right)\right)=\frac{\log |A|}{s}+\frac{s \rho^{2}}{2}
$$

Plug in $s=\sqrt{2 \log |A|} / \rho$ to get

$$
\frac{2}{m} \mathbb{E}_{\sigma} \max _{a \in A} \sum_{i=1}^{m} \sigma_{i} a_{i} \leq \frac{2}{m} \rho \sqrt{2 \log |A|}
$$

Observation 4. So, we now have a bound on the empirical Rademacher average. Basically, to bound the empirical Rademacher average, we want to limit the size of $|A|$.

Definition 5. The growth function of H is defined as $g_{H}(m)=\max _{S}\left|\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{m}\right)\right)\right\}_{h \in H}\right|$. Because we have a set, labelings do not get counted twice. Note that $g_{H}(m) \leq 2^{m}$.

Fact 6. We can restate the result in Theorem 3 in terms of the growth function as follows: If H is a hypothesis space of binary classifiers, then

$$
R(H) \leq \frac{2}{m} \sqrt{2 \log g_{H}(m)} \sqrt{m}=\frac{2}{\sqrt{m}} \sqrt{2 \log g_{H}(m)}
$$

So, for all S,

$$
\widehat{R}(H, S) \leq 2 \sqrt{\frac{2 \log g_{H}(m)}{m}}
$$

Observation 7. If $g_{H}(m)=2^{m}$, the bound is a constant, not diminishing as $O(1 / \sqrt{m})$.

3 Examples

If H is a hypothesis class of binary classifiers, in how many different ways can H label S ? This is moving from linear algebra to combinatorics.

Example $1 H=$ linear classifiers in \mathbb{R}^{2}. If $m=2$, then $g_{H}(m)=4=2^{m}$. The figures below provide the justification for this.

Example $2 H$ = axis-parallel boxes in \mathbb{R}^{2}.

An example of an axis-parallel box. Points inside the box are labeled positive, and points outside the box are labeled negative.

If $m=1$, then clearly $g_{H}(m)=2=2^{m}$. If $m=4$, then $g_{H}(m)=16=2^{m}$, as show using the figures below. Each figure abstractly represents one or more possible labelings (the multiplicity is shown as $k x$, where k is the multiplicity).

One can also show that $g_{H}(5)=31<2^{5}$.
Definition 8. If H can label S in all 2^{m} ways ($m=|S|$), then we say that H shatters S. So, we say that axis-parallel boxes shatter 4 points, but not 5 .

Definition 9. The VC Dimension of a class H is $\operatorname{VCdim}(H)=\max \{|S| \mid H$ shatters $S\}$.

Example $1 H=$ intervals in $\mathbb{R} . g_{H}(1)=2=2^{1} . g_{H}(2)=4=2^{2} . g_{H}(3)<2^{3}$, so H cannot shatter 3 points, as the example below shows.

A labeling of three points in \mathbb{R} that cannot be generated by intervals in \mathbb{R}.

4 Useful Lemmas

Lemma 10. (Sauer) Let H be a hypothesis class of binary classifiers with $V C \operatorname{dim}(H)=d$. Then,

$$
g_{H}(m) \leq \sum_{i=0}^{d}\binom{m}{i}=\Phi_{d}(m)
$$

Lemma 11. (Stirling)

$$
\Phi_{d}(m) \leq\left(\frac{e m}{d}\right)^{d}
$$

Proof.

$$
\begin{aligned}
\left(\frac{d}{m}\right)^{d} \Phi_{d}(m) & =\left(\frac{d}{m}\right)^{d} \sum_{i=0}^{d}\binom{m}{i} \\
& \leq \sum_{i=0}^{d}\left(\frac{d}{m}\right)^{i}\binom{m}{i} \\
& \leq \sum_{i=0}^{m}\left(\frac{d}{m}\right)^{i}\binom{m}{i} \\
& =[\text { Binomial Theorem }] \\
& =\left(1+\frac{d}{m}\right)^{m} \\
& \leq e^{d}
\end{aligned}
$$

Hence,

$$
\sum_{i=0}^{d}\binom{m}{i} \leq\left(\frac{e m}{d}\right)^{d}
$$

