CSE522, Winter 2011, Learning Theory

Lecture 8 - 01/27/2011

Vapnik-Chervonenkis Theory

Lecturer: Ofer Dekel

Scribe: Amol Kapila

1 Recap

- 1. With probability at least 1δ , if $\ell \in [0, c]$, then $\forall h \in H$, $\ell(h; \mathcal{D}) \leq \ell(h; S) + R_m(\ell \circ H) + c\sqrt{\frac{\log(1/\delta)}{2m}}$. A bound like this immediately implies a bound on the excess risk of the empirical risk minimizer. We prove this by proving a stronger, uniform bound on the excess risk across all $h \in H$.
- 2. With high probability, $\widehat{R}_m(\ell \circ H, S) \approx R_m(\ell \circ H)$, where

$$R_m(\ell \circ H) = \frac{2}{m} \mathbb{E}_S \mathbb{E}_\sigma \sup_{h \in H} \sum_{i=1}^m \sigma_i \ell(h; (x_i, y_i)).$$

The empirical Rademacher complexity

$$\widehat{R}_m = \frac{2}{m} \mathbb{E}_{\sigma} \sup_{h \in H} \sum_{i=1}^m \sigma_i \ell(h; (x_i, y_i))$$

is the same thing without the expectation over S.

3. In the case of binary classification $(\mathcal{Y} = \{1, -1\}, \ell = \text{error indicator}),$

$$\widehat{R}_m(\ell \circ H, S) = 1 - 2\min_{h \in H} \ell(h; S'),$$

where $S' = \{(x_i, \sigma_i)\}_{i=1}^m$ and $\sigma_i = \pm 1$ with probability 1/2 each.

- 4. If $h: X \to \mathbb{R}$, $\ell = \ell(yh(x))$ or $\ell(h(x) y)$, and ℓ is λ -Lipschitz in h(x), then $R_m(\ell \circ H) \leq \lambda R_m(H)$. The same property holds for the empirical Rademacher average: $\widehat{R}_m(\ell \circ H, S) \leq \lambda \widehat{R}_m(H, S)$.
- 5. Class of linear hypotheses with norm $\leq B$: $H = \{h_w = \langle w, x \rangle \mid ||w||_2 \leq B\}$. In this case,

$$\widehat{R}_m(H,S) = \frac{2B}{m} \sqrt{\sum_{i=1}^m \|x_i\|_2^2}.$$

If \mathcal{D} is such that $||x|| \leq X$, then $R_m(H) \leq 2BX/\sqrt{m}$.

6. If \overline{H} is the convex hull of H, then $R_m(\overline{H}) = R_m(H)$. (Homework problem).

2 VC Theory

Binary Classification: $\mathcal{Y} = \{1, -1\}, \ell$ is the 0-1 loss (a.k.a., error indicator loss). VC Theory is a combinatorial theory, based on discrete math.

Observation 1. We only need to worry about $R_m(H)$, not $R_m(\ell \circ H)$, if we have 0-1 loss.

Observation 2. If S is a sample of m examples, then there are at most 2^m vectors of the form $(h(x_1), h(x_2), \ldots, h(x_m))$. We will explore how many ways can we label a concrete dataset. **Fact** $(e^{\alpha} + e^{-\alpha})/2 \le e^{\alpha^2/2}$. Proof by Taylor expansion of the exponential function.

Theorem 3. (Massart's Finite Class Lemma) Suppose $A \subseteq \mathbb{R}^m$, $|A| < \infty$, and $\forall a \in A$, $||a||_2 \leq \rho$. Then,

$$\widehat{R}_m(H,S) = \frac{2}{m} \mathbb{E}_{\sigma} \max_{a \in A} \sum_{i=1}^m \sigma_i a_i \le \frac{2}{m} \rho \sqrt{2 \log |A|}$$

Here, each $a \in A$ is a vector of the form $a = (h(x_1), h(x_2), \ldots, h(x_m))$. So, if H can label our set in only a finite number of ways, then the empirical Rademacher average is bounded by the expression on the right-hand side of the inequality.

Proof. For each s > 0,

$$\exp\left(s\mathbb{E}_{\sigma}\max_{a\in A}\sum_{i=1}^{m}\sigma_{i}a_{i}\right) \leq [\text{Jensen's inequality and the convexity of } \exp(\cdot)]$$

$$\leq \mathbb{E}\left(\exp\left(s\max_{a\in A}\sum_{i=1}^{m}\sigma_{i}a_{i}\right)\right)$$

$$= [\text{monotonicity of } \exp(\cdot)]$$

$$= \mathbb{E}_{\sigma}\max_{a\in A}\exp\left(s\sum_{i=1}^{m}\sigma_{i}a_{i}\right)$$

$$= \mathbb{E}_{\sigma}\max_{a\in A}\prod_{i=1}^{m}\exp\left(sa_{i}\sigma_{i}\right)$$

$$\leq \mathbb{E}_{\sigma}\sum_{a\in A}\prod_{i=1}^{m}\exp\left(sa_{i}\sigma_{i}\right)$$

$$= [\text{independence of } \sigma_{i}'s]$$

$$= \sum_{a\in A}\prod_{i=1}^{m}\mathbb{E}_{\sigma_{i}}\exp\left(sa_{i}\sigma_{i}\right)$$

$$\leq [\text{fact stated above]}$$

$$\leq \sum_{a\in A}\prod_{i=1}^{m}\exp\left(\frac{(sa_{i})^{2}}{2}\right)$$

$$= \sum_{a\in A}\exp\left(\frac{s^{2}\rho^{2}}{2}\right).$$

Hence, we can conclude that

$$\mathbb{E}_{\sigma} \max_{a \in A} \sum_{i=1}^{m} \sigma_i a_i \le \frac{1}{s} \log\left(|A| \exp\left(\frac{s^2 \rho^2}{2}\right)\right) = \frac{\log|A|}{s} + \frac{s\rho^2}{2}.$$

Plug in $s=\sqrt{2\log |A|}/\rho$ to get

$$\frac{2}{m} \mathbb{E}_{\sigma} \max_{a \in A} \sum_{i=1}^{m} \sigma_{i} a_{i} \le \frac{2}{m} \rho \sqrt{2 \log |A|}.$$

Observation 4. So, we now have a bound on the empirical Rademacher average. Basically, to bound the empirical Rademacher average, we want to limit the size of |A|.

Definition 5. The growth function of H is defined as $g_H(m) = \max_S |\{(h(x_1), \ldots, h(x_m))\}_{h \in H}|$. Because we have a set, labelings do not get counted twice. Note that $g_H(m) \leq 2^m$.

Fact 6. We can restate the result in Theorem 3 in terms of the growth function as follows: If H is a hypothesis space of binary classifiers, then

$$R(H) \le \frac{2}{m}\sqrt{2\log g_H(m)}\sqrt{m} = \frac{2}{\sqrt{m}}\sqrt{2\log g_H(m)}.$$

So, for all S,

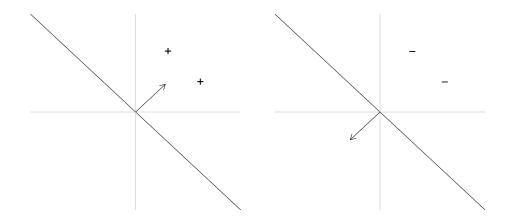
$$\widehat{R}(H,S) \leq 2\sqrt{\frac{2\log g_H(m)}{m}}$$

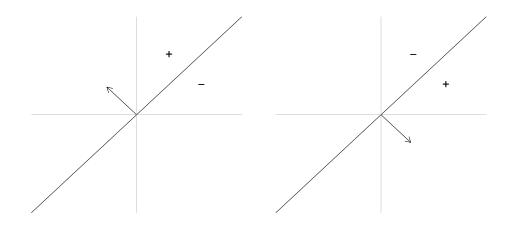
Observation 7. If $g_H(m) = 2^m$, the bound is a constant, not diminishing as $O(1/\sqrt{m})$.

3 Examples

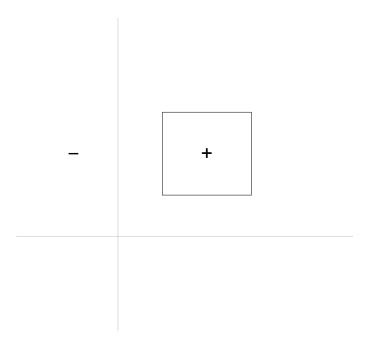
If H is a hypothesis class of binary classifiers, in how many different ways can H label S? This is moving from linear algebra to combinatorics.

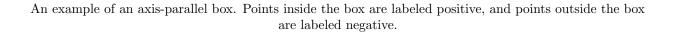
Example 1 H = linear classifiers in \mathbb{R}^2 . If m = 2, then $g_H(m) = 4 = 2^m$. The figures below provide the justification for this.



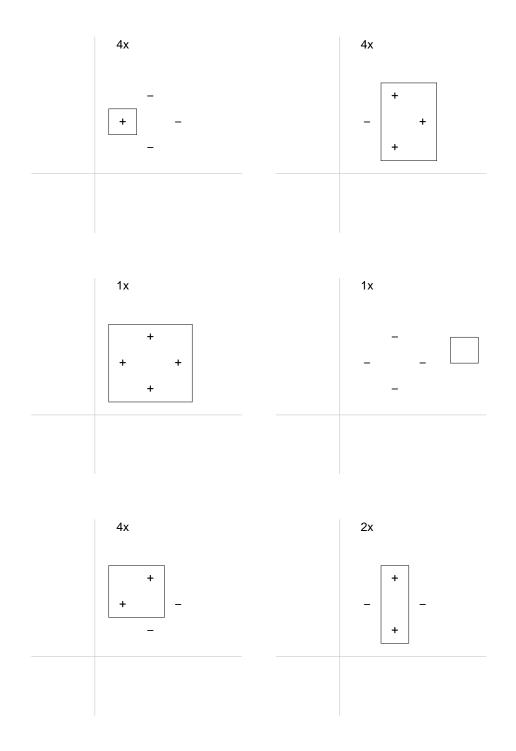


Example 2 H =axis-parallel boxes in \mathbb{R}^2 .





If m = 1, then clearly $g_H(m) = 2 = 2^m$. If m = 4, then $g_H(m) = 16 = 2^m$, as show using the figures below. Each figure abstractly represents one or more possible labelings (the multiplicity is shown as kx, where k is the multiplicity).



One can also show that $g_H(5) = 31 < 2^5$.

Definition 8. If H can label S in all 2^m ways (m = |S|), then we say that H shatters S. So, we say that axis-parallel boxes shatter 4 points, but not 5.

Definition 9. The VC Dimension of a class H is $VCdim(H) = \max\{|S| \mid H \text{ shatters } S\}$.

Example 1 H = intervals in \mathbb{R} . $g_H(1) = 2 = 2^1$. $g_H(2) = 4 = 2^2$. $g_H(3) < 2^3$, so H cannot shatter 3 points, as the example below shows.

A labeling of three points in \mathbb{R} that cannot be generated by intervals in \mathbb{R} .

_

+

4 Useful Lemmas

Lemma 10. (Sauer) Let H be a hypothesis class of binary classifiers with VCdim(H) = d. Then,

+

$$g_H(m) \le \sum_{i=0}^d \binom{m}{i} = \Phi_d(m).$$

Lemma 11. (Stirling)

$$\Phi_d(m) \le \left(\frac{em}{d}\right)^d$$

$$\frac{d}{m} \int^{d} \Phi_{d}(m) = \left(\frac{d}{m}\right)^{d} \sum_{i=0}^{d} \binom{m}{i}$$

$$\leq \sum_{i=0}^{d} \left(\frac{d}{m}\right)^{i} \binom{m}{i}$$

$$\leq \sum_{i=0}^{m} \left(\frac{d}{m}\right)^{i} \binom{m}{i}$$

$$= [\text{Binomial Theorem}]$$

$$= \left(1 + \frac{d}{m}\right)^{m}$$

$$\leq e^{d}.$$

Hence,

Proof.

 $\sum_{i=0}^{d} \binom{m}{i} \le \left(\frac{em}{d}\right)^{d}.$