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Proof of Sauer’s Lemma
Lecturer: Ofer Dekel Scribe: Andrew Guillory

1 Review

In previous lectures we showed that, in the case of binary classification, the Radamacher complexity of a
hypothesis class is closely related to the VC dimension of the class. When discussing VC dimension, we
focus on binary classification. In this setting, Y = {+1,−1}, and ∀h ∈ H h : X → {+1,−1}. Define 0-1 loss
(also called error indicator loss)

l(h; (x, y)) =

{
1 if h(x) 6= y

0 if h(x) = y

In the case of binary classification, h(x) 6= y ⇔ yh(x) = −1 and h(x) = y ⇔ yh(x) = +1. Then, we can use
the equivalent definition

l(h; (x, y)) =
1
2
− 1

2
yh(x)

This loss function is 1
2 -Lipschitz in h(x). We can then use our result for the Radamacher complexity of l ◦H

for Lipschitz loss functions to get

Rm(l ◦ H) ≤ 1
2
Rm(H)

and similarly for empirical Radamacher complexity

R̂m(l ◦ H, S) ≤ 1
2
R̂m(H, S)

Observe that for binary classification,

R̂m(H, S) =
2
m
Eσ max

h∈H

n∑
i=1

σih(xi)

=
2
m
Eσ max

a∈AS

n∑
i=1

σiai

where As = {(h(x1), . . . h(xm)) : h ∈ H}. AS ⊆ {+1,−1}m is a finite set (|AS | ≤ 2m). Also ∀a ∈ As we
have ||a|| =

√
m. Since As is finite and a has bounded length, we can apply Massart’s finite class lemma.

Theorem 1 (Massart’s Finite Class Lemma). ∀A ⊆ Rm with |A| <∞ and maxa∈A ||a|| ≤ ρ

Eσ max
a∈A

m∑
i=1

σiai ≤ ρ
√

2 log |A|

In our case
R̂m(H, S) ≤ 2√

m

√
2 log |A|

Using this bound on empirical Radamacher complexity, we get a bound on Radamacher complexity

Rm(H) ≤ 2√
m

√
2 log gH(m)
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where gH(m) is the growth function of H defined

gH(m) = max
S∈Xm

|AS |

Note that gH(m) ≤ 2m.
We say that H shatters S if H can label S in 2|S| different ways. The VC dimension of a hypothesis class

H is the size of the largest set H can shatter.

V Cdim(H) = max{|S| : H shatters S}
= max{m : gH(m) = 2M}

2 Examples

In some very simple cases we are able to calculate the growth function explicitly. Consider for example the
case where H is the class of intervals on the real line given by h = [a, b] with a ∈ R, b ∈ R, a ≤ b

h(x) =

{
+1 if a ≤ x ≤ b
−1 otherwise

Theorem 2. Let X = R and H be intervals on the real line.

gH(m) = 1 +m+
(
m

2

)
Proof. First count the number of labelings with at least one positive point followed by at least one negative
point. There are

(
m
2

)
such labelings since we must choose the first positive point and the first negative point

after the positive points.
Second count the number of labelings with at least one positive point but no negative labeled points

following the positive points. There are m such labelings since we must choose the first positive point.
Third count the number of labelings with no positive points. There is only 1 such labeling.
Summing these three cases gives that there are 1 +m+

(
m
2

)
different labelings.

We now show that for intervals on the real line V Cdim(H) = 2. Note this result follows from the growth
function, but we show it more directly here to illustrate the common structure of this kind of proof.

Theorem 3. Let X = R and H be intervals on the real line.

V Cdim(H) = 2

Proof. As is standard for proofs showing the VC dimension of a class, there are two steps

1. Lower bound
V Cdim(H) ≥ 2

To show the lower bound, we simply need to give an example set S of 2 points such that H shatters
S. Example:
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2. Upper bound
V Cdim(H) < 3

To show the upper bound, we must argue that ∀S ∈ X 3, |AS | < 23. Equivalently, we must show
∀S ∈ X 3 ∃y ∈ {+1,−1}3 such that H cannot attain the labeling y.

Let x1, x2, x3 be 3 arbitrary points. Without loss of generality, assume x1 ≤ x2 ≤ x3. Let y =
(+1,−1,+1). Assume some h ∈ H with h = [a, b] attains these labels. y1 = +1 so a ≤ x1. y3 = +1 so
x3 ≤ b. Then

a ≤ x1 ≤ x2 ≤ x3 ≤ b

y2 = −1 so this is a contradiction.

3 Sauer’s Lemma

Sauer’s Lemma relates the growth function of a class to its VC dimension.

Theorem 4 (Sauer’s Lemma). If d = V Cdim(H) then

gH(m) ≤
d∑
i=0

(
m

i

)
= Φd(m)

As we just showed, this result is tight for intervals on the real line. A standard result shows Φd(m) is
bounded above by a polynomial of degree d.

Lemma 5.
Φd(m) ≤

(em
d

)d
= O(md)

Sauer’s Lemma then tells us that the growth function gH grows exponentially fast for m ≤ d but then
only grows like a polynomial for m ≥ d. We can then conclude that, so long as the VC dimension of our
class is finite (i.e. V Cdim(H) <∞), as m→∞ we have Rm(l ◦ H) = Õ( 1√

m
)→ 0. Here Õ means ignoring

log terms. Essentially, finite VC dimension implies “learnability”.
Before proving Sauer’s Lemma, we first note that we define

(
m
k

)
as follows(

m

k

)
=

{
m!

(m−k)!k! if 0 ≤ k ≤ m
0 otherwise
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Defining it in this way (i.e. defining it to be 0 for k > m and k < 0) makes the proof cleaner. We also state
the following basic fact from combinatorics(

m

k

)
=
(
m− 1
k

)
+
(
m− 1
k − 1

)
(1)

To see that this holds note that to choose k items from m we can either include or excluse the first item.
If we include it, we must choose k − 1 items from the remaining m− 1. If we exclude it, we must choose k
items from the remaining m− 1.

Proof of Sauer’s Lemma. The proof uses complete induction on m + d. In the base case we show that the
lemma holds for any d and m = 0 and for any m and d = 0. In the inductive step we show the lemma holds
for any m, d with m+ d = k for some constant k assuming that it holds for all m, d with m+ d < k.

• Base Case For any d and m = 0

Φd(m) =
d∑
i=0

(
0
i

)
= 1

and gH(0) ≤ 1 since we can label 0 points at most 1 way.

For any m and d = 0

Φd(m) =
0∑
i=0

(
m

i

)
= 1

and gH(m) = 1 since V Cdim(H) = 1 implies we label everything with the same label.

• Inductive Step Choose S ∈ Xm such that we can choose gH(m) different hypotheses from H that
label S in gH(m) different ways. Call this set of hypotheses A. Define S′ = S \ {x1} (|S′| = m − 1).
Define A′ ⊆ A to be the smallest subset of A that labels S′ in the maximal number of different ways.
If 2 hypotheses in A label S′ the same way then one is in A′ and one is in A \ A′. A = (A \ A′) ∪ A′
and this partition of A into A′ and A \A′ forms the basis of our inductive argument.

If A′ shatters T ⊆ S′ then A also shatters T . therefore |T | ≤ d and V Cdim(A′) ≤ d.

If A\A′ shatters T̃ ⊆ S′ then A shatters T̃∪{x1} This is by construction of A′ since for every h ∈ (A\A′)
there is a corresponding h ∈ A′ that disagrees on x1. Therefore |T̃ | ≤ d−1 and V Cdim(A\A′) ≤ d−1.
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We can now use the inductive hypothesis on both A′ and A \A′

gH(m) = |A| = |A′|+ |A \A′|

≤
d∑
i=0

(
m− 1
i

)
+
d−1∑
i=0

(
m− 1
i

)

=
d∑
i=0

(
m− 1
i

)
+

d∑
i=0

(
m− 1
i− 1

)

=
d∑
i=0

(
m

i

)
The last step used Equation 1.

We can finally conclude that for binary classification with 0-1 loss

Rm(l ◦ H) ≤ 1
2
Rm(H)

≤ 1√
m

√
2 log gH(m)

≤ 1√
m

√
2d log

em

d

= Õ

( √
d√
m

)

This follows from (in order of application) (1) our bound for the Radamacher complexity for Lipschitz loss
functions, (2) Massart’s finite class lemma, and (3) Sauer’s lemma.
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