
Lecture 3

Introduction to Sequence Similarity

January 11, 2000
Notes: Martin Tompa

3.1. Sequence Similarity

The next few lectures will deal with the topic of “sequence similarity”, where the sequences under consid-
eration might be DNA, RNA, or amino acid sequences. This is likely the most frequently performed task
in computational biology. Its usefulness is predicated on the assumption that a high degree of similarity be-
tween two sequences often implies similar function and/or three-dimensional structure. Most of the content
of these lectures on sequence similarity is from Gusfield [1].

Why are we starting here, rather than with a discussion of how biologists determine the sequence in the
first place? The reason is that the problems and algorithms of sequence similarity are reasonably simple to
state. This makes it a good context in which to ensure that we agree on the language we will be using to
discuss computing and algorithms.

To begin that process, the word algorithm simply means an unambiguously specified method for solving
a problem. In this context, an algorithm may be thought of as a computer program, although algorithms are
usually expressed in a somewhat more abstract language than real programming languages.

3.2. Biological Motivation for Studying Sequence Similarity

We start with two motivating applications in which sequence similarity is utilized.

3.2.1. Hypothesizing the Function of a New Sequence

When a new genome is sequenced, the usual first analysis performed is to identify the genes and hypothesize
their functions. Hypothesizing their functions is most often done using sequence similarity algorithms, as
follows. One first translates the coding regions into their corresponding amino acid sequences, using the
genetic code of Table 1.1. One then searches for similar sequences in a protein database that contains
sequenced proteins (from related organisms) and their functions. Close matches allow one to make strong
conjectures about the function of each matched gene. In a similar way, sequence similarity can be used to
predict the three-dimensional structure of a newly sequenced protein, given a database of known protein
sequences and their structures.

12



LECTURE 3. INTRODUCTION TO SEQUENCE SIMILARITY 13

3.2.2. Researching the Effects of Multiple Sclerosis

Multiple sclerosis is an autoimmune disease in which the immune system attacks nerve cells in the patient.
More specifically, the immune system’s T-cells, which normally identify foreign bodies for immune system
attacks, mistakenly identify proteins in the nerves’ myelin sheaths as foreign.

It was conjectured that the myelin sheath proteins identified by the T-cells were similar to viral and/or
bacterial sheath proteins from an earlier infection. In order to test this hypothesis, the following steps were
carried out:

� the myelin sheath proteins were sequenced,

� a protein database was searched for similar bacterial and viral sequences, and

� laboratory tests were performed to determine if the T-cells attacked these same proteins.

The result was the identification of certain bacterial and viral proteins that were confused with the myelin
sheath proteins.

3.3. The String Alignment Problem

The first task is to make the problem of sequence similarity more precise. A string is a sequence of characters
from some alphabet. Given two strings acbcdb and cadbd, how should we measure how similar they are?
Similarity is witnessed by finding a good “alignment” between two strings. Here is one possible alignment
of these two strings.

a c - - b c d b
- c a d b - d -

The special character “ � ” represents the insertion of a space, representing a deletion from its sequence (or,
equivalently, an insertion in the other sequence). We can evaluate the goodness of such an alignment using
a scoring function. For example, if an exact match between two characters scores

���
, and every mismatch

or deletion (space) scores ��� , then the alignment above has score

�	��
 ������ ��
 ��� ��� ��

This example shows only one possible alignment for the given strings. For any pair of strings, there are
many possible alignments.

The following definitions generalize this example.

Definition 3.1: If � and � are each a single character or space, then � 
 ����� � denotes the score of aligning
� and � . � is called the scoring function.

In the example above, for any two distinct characters � and � , � 
 ����� � �!��� , and � 
 �"��� � � � 
 ���#� �$�
� 
 ����� �%� ��� . If one were designing a scoring function for comparing amino acid sequences, one would
certainly want to incorporate into it the physico-chemical similarities and differences among the amino
acids, such as those described in Section 1.1.1.



LECTURE 3. INTRODUCTION TO SEQUENCE SIMILARITY 14

Definition 3.2: If
�

is a string, then � � � denotes the length of
�

and
��� ���

denotes the
�
th character of

�
(where the first character is

��� � � rather than, say,
��� ���

).

For example, if
� �

acbcdb, then � � � �
	
and

��� � � �
b.

Definition 3.3: Let
�

and � be strings. An alignment � maps
�

and � into strings
��

and �  that may
contain space characters, where

1. � �  � � � �  � , and

2. the removal of spaces from
��

and �  (without changing the order of the remaining characters) leaves�
and � , respectively.

The value of the alignment � is �� �
��� ��� �  � ��� ���  � ����� �

where � � � �� � � � �  � .
In the example alignment above, if

� �
acbcdb and � �

cadbd, then
�� �

ac--bcdb and �  �
-cadb-d-.

Definition 3.4: An optimal alignment of
�

and � is one that has the maximum possible value for these
two strings.

Finding an optimal alignment of
�

and � is the way in which we will measure their similarity. For
the two strings given in the example above, is the alignment shown optimal? We will next present some
algorithms for computing optimal alignments, which will allow us to answer that question.

3.4. An Obvious Algorithm for Optimal Alignment

The most obvious algorithm is to try all possible alignments, and output any alignment with maximum value.
We will examine this approach in more detail.

A subsequence of a string
�

means a sequence of characters of
�

that need not be consecutive in
�

, but
do retain their order as given in

�
. For instance, acd is a subsequence of acbcdb.

Suppose we are given strings
�

and � , and assume for the moment that � � � � � ��� �! 
. Also, consider

an arbitrary scoring function � 
 ����� � , subject to the reasonable restriction that � 
 ���#� �#" �
. With this

restriction, there is never a reason to align a pair of spaces.

The obvious algorithm for optimal alignment is given in Figure 3.1. This algorithm works correctly, but
is it a good algorithm? If you tried running this algorithm on a pair of strings each of length 20 (which is
ridiculously modest by biology standards), you would find it much too slow to be practical. The program
would run for an hour on such inputs, even if the computer can perform a billion basic operations per second.



LECTURE 3. INTRODUCTION TO SEQUENCE SIMILARITY 15

for all
�
,
� " � "  

, do
for all subsequences � of

�
with � ��� � � do

for all subsequences
�

of � with � � � � � do
Form an alignment that matches � ��� � with

� ��� �
, � " � " �

,
and matches all other characters with spaces;

Determine the value of this alignment;
Retain the alignment with maximum value;

end ;
end ;

end ;

Figure 3.1: Enumerating all Alignments to Find the Optimal

The running time analysis of this algorithm proceeds as follows. A string of length
 

has ��� � � subse-

quences of length
�
. 1 Thus, there are � � � ��� pairs


 � � � � of subsequences each of length
�
. Consider one

such pair. Since there are
 

characters in
�

, only
�

of which are matched with characters in � , there will be � � characters in
�

unmatched to characters in � . Thus, the alignment has length
 $� 
  � � � � �  � � .

We must look up and add the score of each pair in the alignment, so the total number of basic operations is
at least �� � ���

	  ��
 � 
 �  � � ��  �� � ���
	  ��
 � �  	 �   
�� � � � � for

 � � �
(The equality has a pretty combinatorial explanation that is worth discovering. The last inequality follows
from Stirling’s approximation [2].) Thus, for

 � � �
, this algorithm requires more than

� � � � ��� � basic
operations.

3.5. Asymptotic Analysis of Algorithms

In Section 4.1 we will see a cleverer algorithm that runs in time proportional to
 �

. For large
 

, it is clear that� � � is greater than
 �

. As a demonstration that an algorithm that requires time proportional to
 �

is far more
desirable than one that requires time

� � � , consider at what value of
 

these two functions cross. Suppose
the actual running time of the cleverer algorithm is � � �  � � � � �  � � � � . The value of

� � � already exceeds
this quadratic at

 ���
. Suppose instead that the running time is � � � � � �  � � � � �  � � � � . Despite the

fact that we increased the constant of proportionality by a factor of 100,
� � � already exceeds this quadratic

at
 � � � . This demonstration should make it clear that the rate of growth of the high order term is the

most important determinant of how long an algorithm runs on large inputs, independent of the constant of
proportionality and any lower order terms.

To formalize this notion, we introduce “big O” notation.

Definition 3.5: Let � 
  � and � 
  � be functions. Then � 
  � ��� 
 � 
  ��� if and only if there is a constant
� such that, for all

 
sufficiently large, � � 
  � � " ��� 
  � .

1The notation ��� � � denotes the number of combinations of � distinguishable objects taken � at a time. See any textbook on
combinatorial mathematics, for instance Roberts [2].



LECTURE 3. INTRODUCTION TO SEQUENCE SIMILARITY 16

For example, � � �  � � � � �  � � � � and � � � � � �  � � � � �  � � � � are both
� 
  � �

. For the former, � � � � �
works, and for the latter, � � � � � � � � works.

References

[1] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

[2] F. S. Roberts. Applied Combinatorics. Prentice-Hall, 1984.


