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5.1. Computing an Optimal Local Alignment by Dynamic Programming
Basis : For simplicity, we will make the reasonable assumption that o(xz,—) < 0 and o(—,z) < 0.
Then
v(i,0) = 0, and
v(0,5) = 0,

since the optimal suffix to align with a string of length 0 is the empty suffix.

RecurreNce : fori > 0and j > 0,

v(i,j) = max( 0 :

/U(Z - 1aj - 1) + O-(S[’L],T[]]) 3
v(i —1,7) + o(Sk,-)
/U(iaj - 1) + U(_aT[j]) )

The formula looks very similar to the recurrence for the optimal global alignment in Section 4.1. Of
course, the meaning is somewhat different and we have an additional term in the max function. The recur-
rence is explained as follows. Consider an optimal alignment A of a suffix « of S[1]--- S[i] and a suffix 3
of T'[1] - - - T'[4]. There are four possible cases:

1. a = Aand g8 = A, in which case the alignment has value 0.

2. a# dand 8 # ), and the last matched pair in A is (S[z], T'[4]), in which case the remainder of A has
value v(z — 1,5 — 1).

3. a # A, and the last matched pair in A is (S[i], —), in which case the remainder of A has value
4. B # A, and the last matched pair in A is (—,T'[4]), in which case the remainder of A has value
v(i,j — 1).

The optimal alignment chooses whichever of these cases has greatest value.

21



LECTURES. LOCAL ALIGNMENT, AND GAPPENALTIES 22

5.1.1. Example

For example, let S = abcxdex and T' = xxxcde, and suppose a match scores 42, and a mismatch or a
space scores —1. The dynamic programming algorithm fills in the table of v (3, j) values from top to bottom
and left to right, as follows:

j1011/2|3|4|5|6
1 z|lx|z|c|d|e
0 0/0(0]0]0|0]0
1 a|0(0[0]|0|0|0]0
2 b(0[0[0]0]|0]0|0
3 ¢c|0]0|0]0|2]|1]0
4 z|0]2|2]|2|1|1]0
5 d{0f|1|1|1]1|3|2
6 e{0[{0]0|0|0]|2]|5
7T z|0(2(2]2|1]|1]|4

The value of the optimal local alignment is v(6,6) = 5. We can reconstruct optimal alignments as in
Section 4.1.2, by retracing from any maximum entry to any zero entry:

jl1ol1|2 3 4 5 6
1 T|x T c d e
0 0/00 0 0 0 0
1 a|0/0/0 0 0 0 0
2 b(0]0]0 0 0 0 0
3 ¢c|0]0]0 0] 2 1 0
4 z|0|2|2]\2| 11 1 0
5 d{o]1]1 1 113 2
6 el0[0]0 0 0 21\\5
7 z|0]2]2 2 1 1 4

The optimal local alignments corresponding to these paths are

c x d e and x - d e
c - d e x ¢ d e

Both alignments have three matches and one space, for a value of 3 - (2) + 1 - (—1) = 5. You can also see
from this diagram how the value was derived in the example following Definition 4.5, which said that for
the same strings S and 7', v(5,5) = 3.

5.1.2. Time Analysis

Theorem 5.1: The dynamic programming algorithm computes an optimal local alignment in time
O(nm).

Proof: Computing the value for each of the (n + 1)(m + 1) entries requires at most 6 table lookups, 3
additions, and 1 max calculation. Reconstructing a single alignment can then be done in time O(n +m). O
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5.2. Space Analysis

The space required for either the global or local optimal alignment algorithm is also quadratic in the length
of the strings being compared. This could be prohibitive for comparing long DNA sequences. There is
a modification of the dynamic programming algorithm that computes an optimal alignment in O(n + m)
space and still runs in O(nm) time. If one were interested only in the value of an optimal alignment, this
could be done simply by retaining only two consecutive rows of the dynamic programming table at any
time. Reconstructing an alignment is somewhat more complicated, but can be done in O(n + m) space and
O(nm) time with a divide and conquer approach (Hirschberg [4], Myers and Miller [7]).

5.3. Optimal Alignment with Gaps

Definition 5.2: A gap in an alignment of S and 7" is a maximal substring of either S’ or T" consisting
only of spaces. (Recall from Definition 3.3 that S’ and 7" are S and T" with spaces inserted as dictated by
the alignment.)

5.3.1. Motivations

In certain applications, we may not want to have a penalty proportional to the length of a gap.

1. Mutations causing insertion or deletion of large substrings may be considered a single evolutionary
event, and may be nearly as likely as insertion or deletion of a single residue.

2. cDNA matching: Biologists are very interested in learning which genes are expressed in which types
of specialized cells, and where those genes are located in the chromosomal DNA. Recall from Section
2.5 that eukaryotic genes often consist of alternating exons and introns. The mature mRNA that leaves
the nucleus after transcription has the introns spliced out. To study gene expression within specialized
cells, one procedure is as follows:

(a) Capture the mature mRNA as it leaves the nucleus.

(b) Make complementary DNA (abbreviated cDNA) from the mRNA using an enzyme called reverse
transcriptase. The cDNA is thus a concatenation of the gene’s exons.

(c) Sequence the cDNA.

(d) Match the sequenced cDNA against sequenced chromosomal DNA to find the region of chromo-
somal DNA from which the cDNA derives. In this process we do not want to penalize heavily
for the introns, which will match gaps in the cDNA.

In general, the gap penalty may be some arbitrary function g(q) of the gap length ¢. The best choice of
this function, like the best choice of a scoring function, depends on the application. In the cDNA matching
application, we would like the penalty to reflect what is known about the common lengths of introns. In
the next section we will see an O(nm) time algorithm for the case when g(q) is an arbitrary linear affine
function, and this is adequate for many applications. There are programs that use piecewise linear functions
as gap penalties, and these may be more suitable in the cDNA matching application. There are O(nm log m)
time algorithms for the case when g(q) is concave downward (Galil and Giancarlo [3], Miller and Myers
[6]). We could even implement an arbitrary function as a gap penalty function, but the known algorithm
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for this requires cubic time (Needleman and Wunsch [8]), and such an algorithm is probably not useful in
practice.

5.3.2. Affine Gap Model

We will study a model in which the penalty for a gap has two parts: a penalty for initiating a gap, and another
penalty that depends linearly on the length of a gap. That is, the gap penalty is W, + ¢W, where W, and
W are both constants, W, > 0, W > 0, and ¢ > 1 is the length of the gap. (Note that the model with a
constant penalty regardless of gap length is the special case with W, = 0.)

For simplicity, assume we are modifying the global alignment algorithm of Section 4.1 to accommodate
an affine gap penalty. Similar ideas would work for local alignment as well.

We will assume o(z,—) = o(—,x) = 0, since the spaces will be penalized as part of the gap. Our goal
then is to maximize

¢
Z o(S'[i], T'[i]) — W, (# gaps) — W(# spaces),

where S" and T" are .S and T with spaces inserted, and |S’| = |T"| = 1.

5.3.3.  Dynamic Programming Algorithm

Once again, the algorithm proceeds by aligning S[1] - - - S[¢] with T'[1] - - - T'[j]. For these prefixes of S and
T, define the following variables:

1. V'(4,7) is the value of an optimal alignment of S[1]--- S[:] and T'[1] - - - T'[§].

2. G(i,7) is the value of an optimal alignment of S[1]--- S[z] and T'[1] - - - T'[j] whose last pair matches
S[i] with T[5].

3. F(4,7) is the value of an optimal alignment of S[1]--- S[¢] and T'[1] - - - T'[5] whose last pair matches
S|i] with a space.

4. E(i,j) is the value of an optimal alignment of S[1] - -- S[¢] and T'[1] - - - T'[4] whose last pair matches
a space with T'[5].

BAsIs:
V(0,0) = 0,
V(i,0) = —W,—iW;, fori>0,
V(0,5) = —W,—jW, forj >0,
E(i,0) = —oo, fori >0,
F(0,5) = —oo, forj > 0.

RECURRENCE : Fors > 0 and j > 0,

V(i,j) = max(G(,j), F(i,5), E( 7)),
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G(Zaj) = V(Z - laj - 1) + G(S[Z]aT[]])a
F(Z,_]) = maX(F(i_Lj)_WSa V(i_laj)_Wg_Ws)a
max(E(i,j — 1) = Wy, V(i,j — 1) — W, — W,).

s>
—
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N

I

The equation for F'(,j) (and analogously E(i,j)) can be understood as taking the maximum of two
cases: adding another space to an existing gap, and starting a new gap. To understand why starting a
new gap can use V(i — 1, 7), which includes the possibility of an alignment ending in a gap, consider that
V(i—1,j5) =max(G(i—1,j5), F(i—1,j), E(i—1,5)), sothat F(i—1, j) — W, — Wy is always dominated
by F(i — 1,5) — W, so will never be chosen by the max.

5.3.4. Time Analysis

Theorem 5.3: An optimal global alignment with affine gap penalty can be computed in time O(nm).

Proof: The algorithm proceeds as those we have studied before, but in this case there are three or four
matrices to fill in simultaneously, depending on whether you store the values of V (4, j) or calculate them
from the other three matrices when needed. O

5.4. Bibliographic Notes on Alignments

Bellman [2] began the systematic study of dynamic programming. The original paper on global alignment
is that of Needleman and Wunsch [8]. Smith and Waterman [9] introduced the local alignment problem, and
the O(nm) algorithm to solve it. A number of authors have studied the question of how to construct a good
scoring function for sequence comparison, including Karlin and Altschul [5] and Altschul [1].

References

[1] S. F. Altschul. A protein alignment scoring system sensitive at all evolutionary distances. Journal of
Molecular Evolution, 36(3):290-300, Mar. 1993.

[2] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] Z. Galil and R. Giancarlo. Speeding up dynamic programming with applications to molecular biology.
Theoretical Computer Science, 64:107-118, 1989.

[4] D. S. Hirschberg. A linear-space algorithm for computing maximal common subsequences. Communi-
cations of the ACM, 18:341-343, June 1975.

[5] S. Karlin and S. F. Altschul. Methods for assessing the statistical significance of molecular sequence
features by using general scoring schemes. Proceedings of the National Academy of Science USA,
87(6):2264-2268, Mar. 1990.

[6] W. Miller and E. W. Myers. Sequence comparison with concave weighting functions. Bulletin of
Mathematical Biology, 50(2):97-120, 1988.



LECTURES. LOCAL ALIGNMENT, AND GAPPENALTIES 26

[7] E. W. Myers and W. Miller. Optimal alignments in linear space. Computer Applications in the Bio-
sciences, 4:11-17, 1988.

[8] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology, 48:443-453, 1970.

[9] T.F. Smith and M. S. Waterman. ldentification of common molecular subsequences. Journal of Molec-
ular Biology, 147(1):195-197, Mar. 1981.



