CSE 527 Computational Biology Autumn 2004

Lectures ~14-15
Gene Prediction

Motivation

- Sequence data flooding into Genbank
- What does it mean?

protein genes, RNA genes, mitochondria, chloroplast, regulation, replication, structure, repeats, transposons, unknown stuff, ...

3

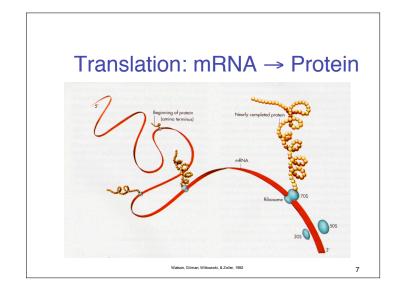
Some References

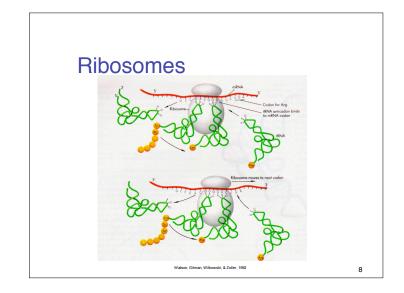
- A great online bib
 - http://www.nslij-genetics.org/gene/
- A good intro survey
 - JM Claverie (1997) "Computational methods for the identification of genes in vertebrate genomic sequences" Human Molecular Genetics, 6(10)(review issue): 1735-1744.
- A gene finding bake-off
 - M Burset, R Guigo (1996), "Evaluation of gene structure prediction programs", Genomics, 34(3): 353-367.

2

Protein Coding Nuclear DNA

- Focus of next 2 lectures
- Goal: Automated annotation of new sequence data
- State of the Art:
 - predictions ~ 60% similar to real proteins
 - ~80% if database similarity used
 - lab verification still needed, still expensive


Biological Basics


Central Dogma:

DNA transcription RNA translation Protein

- Codons: 3 bases code one amino acid
 - Start codon
 - Stop codons
 - 3', 5' Untranslated Regions (UTR's)

TI		Ge RNA Code	ons for the Secon	Twenty :			
		ïυ	C	Α	G		Amino-acid abbreviations
	U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys STOP Trp	U G A G	Ala = Alanine Arg = Arginine Asp = Aspartic acid Asn = Asparagline Cvs = Cvsteline
ASG	C	Leu Leu Leu Leu	Pro Pro Pro	His His Gin Gin	Arg Arg Arg Arg	U G A	Glu = Glutamic acid Glu = Glutamic Glycine Glycine His = Histidine His = Histidine Lsu = Leucine
-IISI DASE	Α	lle lle lle Met (start)	Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	U C A	Lys = Lysine Met = Methionine Phe = Phenylalanine
	G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	U C A G	Pro = Proline Ser = Serine Thr = Threonine Trp = Tryptophan Tyr = Tyrosine Val = Valine
'							1 val = valine

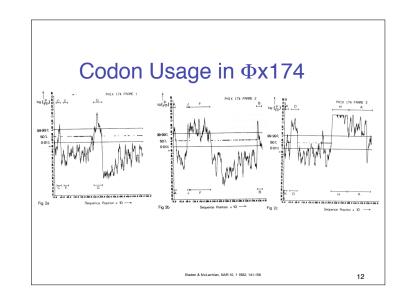
Idea #1: Find Long ORF's

- Reading frame: which of the 3 possible sequences of triples does the ribosome read?
- Open Reading Frame: No stop codons
- In random DNA
 - average ORF = 64/3 = 21 triplets
 - 300bp ORF once per 36kbp per strand
- But average protein ~ 1000bp

9

Idea #2: Codon Frequency

In random DNA


Leucine: Alanine: Tryptophan = 6:4:1

- But in real protein, ratios ~ 6.9:6.5:1
- So, coding DNA is not random
- Even more: synonym usage is biased (in a species dependant way)
 examples known with 90% AT 3rd base

10

Recognizing Codon Bias

- Assume
 - Codon usage i.i.d.; abc with freq. f(abc)
 - a₁a₂a₃a₄...a₃n+₂ is coding, unknown frame
- Calculate
 - $p_1 = f(a_1 a_2 a_3) f(a_4 a_5 a_6) \dots f(a_{3n-2} a_{3n-1} a_{3n})$
 - $p_2 = f(a_2 a_3 a_4) f(a_5 a_6 a_7) \dots f(a_{3n-1} a_{3n} a_{3n+1})$
 - $p_3 = f(a_3 a_4 a_5) f(a_6 a_7 a_8) \dots f(a_{3n} a_{3n+1} a_{3n+2})$
 - $P_i = p_i / (p_1 + p_1 + p_3)$
- More generally: k-th order Markov model
 - k=5 or 6 is typical

Promoters, etc.

- In prokaryotes, most DNA coding E.g. ~ 70% in *H. influenzae*
- Long ORFs + codon stats do well
- But obviously won't be perfect
 - short genes
 - 5' & 3' UTR's
- Can improve by modeling promoters & other signals
 - e.g. via WMM or higher-order Markov models

13

Eukaryotes

- As in prokaryotes (but maybe more variable)
 - promoters
 - start/stop transcription
 - start/stop translation

New Features:
 polyA site/tail
 introns, exons, splicing

AG/GT yyy..AG/G AG/GT
AG/GT yyyy..AG/G AG/GT
AG/GT yyyyy..AG/G AG/GT
AG/GT yyyyy..AG/G AG/GT
AG/GT yyyyy..AG/G AG/GT
AG/GT yyyyy..AG/G AG/

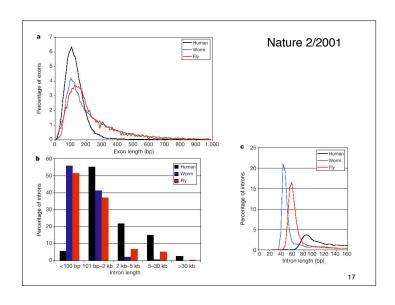
- branch point signal
- alternative splicing

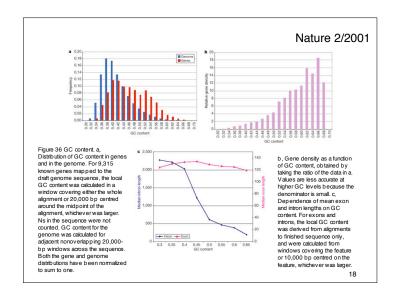
14

Characteristics of human genes

(Nature, 2/2001, Table 21)

	Median Mean		Sample (size)				
Internal exon	122 bp	145 bp	RefSeq alignments to draft genome sequence, with confirmed intron boundaries (43,317 exons)				
Exon number	7	8.8	RefSeq alignments to finished sequence (3,501 genes)				
Introns	1,023 bp	3,365 bp	RefSeq alignments to finished sequence (27,238 introns)				
3' UTR	400 bp	770 bp	Confirmed by mRNA or EST on chromo 22 (689)				
5' UTR	240 bp	300 bp	Confirmed by mRNA or EST on chromo 22 (463)				
Coding seq	1,100 bp	1340bp	Selected RefSeq entries (1,804)*				
(CDS)	367 aa	447 aa					
Genomic extent	14 kb	27 kb	Selected RefSeq entries (1,804)*				


* 1,804 selected RefSeq entries were those with fulllength unambiguous alignment to finished sequence


15

Big Genes

- Many genes are over 100 kb long,
- Max known: dystrophin gene (DMD), 2.4 Mb.
- The variation in the size distribution of coding sequences and exons is less extreme, although there are remarkable outliers.
 - The titin gene has the longest currently known coding sequence at 80,780 bp; it also has the largest number of exons (178) and longest single exon (17,106 bp).

RNApol rate: 2.5 kb/min

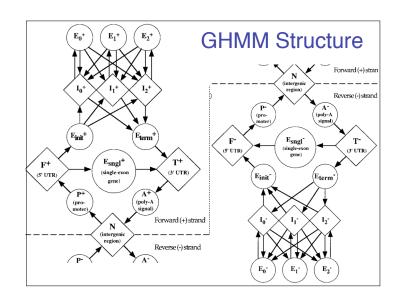
A Case Study -- Genscan

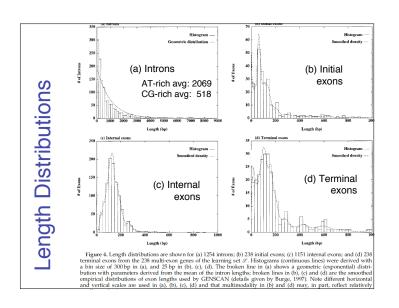
 C Burge, S Karlin (1997), "Prediction of complete gene structures in human genomic DNA", <u>Journal of Molecular</u> <u>Biology</u>, 268: 78-94.

.

Training Data

- 238 multi-exon genes
- 142 single-exon genes
- total of 1492 exons
- total of 1254 introns
- total of 2.5 Mb
- NO alternate splicing, none > 30kb, ...


Performance Comparison


	Accuracy							
	per r	nuc.						
Program	Sn	Sp	Sn	Sp	Avg.	ME	WE	
GENSCAN	0.93	0.93	0.78	0.81	0.8	0.09	0.05	
FGENEH	0.77	0.88	0.61	0.64	0.64	0.15	0.12	
GeneID	0.63	0.81	0.44	0.46	0.45	0.28	0.24	
Genie	0.76	0.77	0.55	0.48	0.51	0.17	0.33	
GenLang	0.72	0.79	0.51	0.52	0.52	0.21	0.22	
GeneParser2	0.66	0.79	0.35	0.4	0.37	0.34	0.17	
GRAIL2	0.72	0.87	0.36	0.43	0.4	0.25	0.11	
SORFIND	0.71	0.85	0.42	0.47	0.45	0.24	0.14	
Xpound	0.61	0.87	0.15	0.18	0.17	0.33	0.13	
GeneID‡	0.91	0.91	0.73	0.7	0.71	0.07	0.13	
GeneParser3	0.86	0.91	0.56	0.58	0.57	0.14	0.09	

After Burge&Karlin, Table 1. Sensitivity, Sn = TP/AP; Specificity, Sp = TP/PP

Generalized Hidden Markov Models

- π: Initial state distribution
- a_{ij}: Transition probabilities
- One submodel per state
- Outputs are strings gen'ed by submodel
- Given length L
 - Pick start state q₁ (~π)
 - While $\sum d_i < L$
 - Pick string s_i of length d_i = ls_il ~ submodel for q_i
 - Pick next state q_{i+1} (~a_{ii})
 - Output s₁s₂...

Ellect of G+C Content								
Group	I	II	III	IV				
C ‡ G% range	<43	43-51	51-57	>57				
Number of genes	65	115	99	101				
Est. proportion single-exon genes	0.16	0.19	0.23	0.16				
Codelen: single-exon genes (bp)	1130	1251	1304	1137				
Codelen: multi-exon genes (bp)	902	908	1118	1165				
Introns per multi-exon gene	5.1	4.9	5.5	5.6				
Mean intron length (bp)	2069	1086	801	518				
Est. mean transcript length (bp)	10866	6504	5781	4833				
Isochore	L1+L2	H1+H2	Н3	Н3				

2074

83000

0.892

0.095

0.008

0.005

22100 24700

1054

36000

0.867

0.103

0.018

102

9100

5400

0.54

0.338

0.077

0.011 0.045

68

9100

2600

0.418

0.388

0.122

0.072

Effect of C . C Content

Submodels

- 5' UTR
 - L ~ geometric(769 bp), s ~ MM(5)
- 3' UTR
 - L ~ geometric(457 bp), s ~ MM(5)
- Intergenic
 - L ~ geometric(GC-dependent), s ~ MM(5)
- Introns
 - L ~ geometric(GC-dependent), s ~ MM(5)

27

Submodel: Exons

DNA amount in genome (Mb)

Est. mean intergenic length

5' Untranslated region (F+, F-)

3' Untranslated region (T+, T-)

Estimated gene number

Initial probabilities: Intergenic (N)

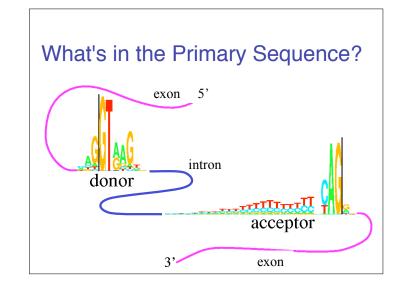
Intron (I+, I-)

- Inhomogenious 3-periodic 5th order Markov models
- Separate models for low GC (<43%), high GC
- Track "phase" of exons, i.e. reading frame.

Signal Models I: WMM's

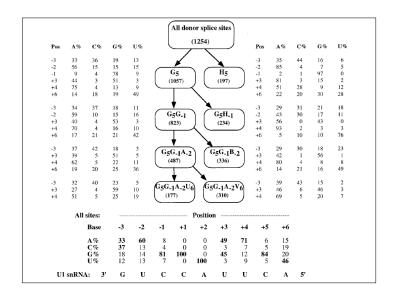
- Polyadenylation
 - 6 bp, consensus AATAAA
- Translation Start
 - 12 bp, starting 6 bp before start codon
- Translation stop
 - A stop codon, then 3 bp WMM

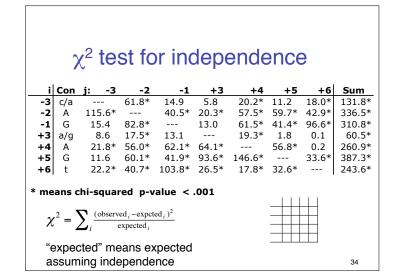
29

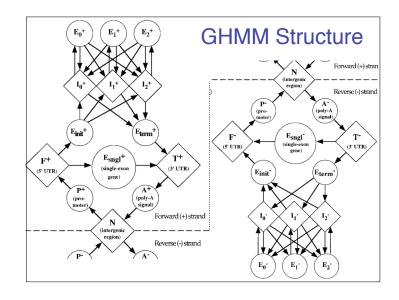

Signal Models II: more WMM's

- Promoter
 - 70% TATA
 - 15 bp TATA WMM
 - s ~ null, L ~ Unif(14-20)
 - 8 bp cap signal WMM
 - 30% TATA-less
 - 40 bp null

30


Signal Models III: W/WAM's


- Acceptor Splice Site (3' end of intron)
 - [-20..+3] relative to splice site modeled by "1st order weight array model"
- Branch point & polypyrimidine tract
 - Hard. Even weak consensus like YYRAY found in [-40..-21] in only 30% of training
 - "Windowed WAM": 2nd order WAM, but averaged over 5 preceding positions "captures weak but detectable tendency toward YYY triplets and certain branch point related triplets like TGA, TAA, ..."



Signal Models IV: Maximum Dependence Decomposition

- Donor splice sites (5' end of intron) show dependencies between nonadjacent positions, e.g. poor match at one end compensated by strong match at other end, 6 bp away
- Model is basically a decision tree
- Uses χ^2 test to quantitate dependence

Summary of Burge & Karlin

- Coding DNA & control signals nonrandom
 - Weight matrices, WAMs, etc. for controls
 - Codon frequency, etc. for coding
- GHMM nice for overall architecture
- Careful attention to small details pays

37

Problems with BK training set

- 1 gene per sequence
- Annotation errors
- Single exon genes over-represented?
- Highly expressed genes over-represented?
- Moderate sized genes over-represented? (none > 30 kb) ...
- Similar problems with other training sets, too

38

Problems with all methods

- Pseudo genes
- Short ORFs
- Sequencing errors
- Non-coding RNA genes & spliced UTR's
- Overlapping genes
- Alternative splicing/polyadenylation
- Hard to find novel stuff -- not in training
- Species-specific weirdness -- spliced leaders, polycistronic transcripts, RNA editing...

39

Other ideas

- Database search does gene you're predicting look anything like a known protein?
- Comparative genomics what does this region look like in related organisms?