CSE 527
Lectures ~12-13

Markov Models and Hidden Markov Models




Markov & Hidden
Markov Models

® Reference: Durbin, Eddy, Krogh and

Mitchison, “Biological Sequence Analysis”
Cambridge, 1998




Independence

® A key issue: All models we’ve talked about
so far assume independence of nucleotides in
different positions - definitely unrealistic.




Example:"CpG Islands”™

® CpG - 2 adjacent nucs, same strand (not VWatson-
Crick)

® C of CpG is often methylated (in Eukaryotes)
® Methyl-C mutates to T relatively easily

® Net: CpG is less common than expected genome-
wide: f(CpG) < f(C)*f(G)

® BUT in promoter (& other) regions, CpG remain
unmethylated, so CpG ->TpG less likely there:
makes “CpG Islands”




CpG Islands

o CpG Islands
® More CpG than elsewhere
® More C & G than elsewhere, too
® Typical length: few 100 to few 1000 bp
® Questions
® Given short sequence (say 200 bp), is it a
CpG island or not!
® Given long sequence (say, 10-100kb), fing
CpG islands in it?
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Training

® Max likelihood estimates for transition
probabilities are just the frequencies of
transitions when emitting the training
sequences




Al UETIVEU TWO IVIATKOV Chain models, one for the regions labelled as CpG is-
lands (the ‘4’ model) and the other from the remainder of the sequence (the ‘-’
model). The transition probabilities for each model were set using the equation

+
afmete (3.3)

5t
e o
and its analogue for a;,, where c; is the number of times letter 7 followed letter
5 in the labelled regions. These are the maximum likelihood (ML) estimators for
the transition probabilities, as described in Chapter 1.

q q Cf 6 (In this case there were almost 60 000 nucleotides, and ML estimators are ade-
quate. If the number of counts of each type had been small, then a Bayesian es-

i l,f g timation process would have been more appropriate, as discussed in Chapter 11
and below for HMMs.) The resulting tables are lod r G

A - G T - A C G T

0.180 0.274 0426 0.120 0300 0.205 0.285 0.210
0.171 0.368 0.274 0.188 0322 0.298* 0.078 0.302
0.161 0339 0375 0.125 0.248 0246 0.298 0.208 b
0.079 0.355 0.384 0.182 0.177 0.239 0292 0.292

X
A
e
G
T

where the first row in each case contains the frequencies with which an 2 is
followed by each of the four bases, and so on for the other rows, so each row

= G 0
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les the probability for G following C is lower than that for C following G,
1 the effect is stronger in the ‘—’ table, as expected.
e these models for discrimination, we calculate the log-odds ratio

P (x|model +) ilﬂ a5 .
Plxliiddal —) &= R,

L
Zﬁii—lxi
i=l1

1s the sequence and fB,, |, are the log likelihood ratios of corresponding
n probabilities. A table for B is given below in bits:'

S(x)

AR | C G T

A -0.740 0419 0580 -0.803
C =SS H0E 1817 —(EG8S
G -—-0.624 0461 0331 -0.730
T —=1.169 0575+ 0393 —0679

> 3.2 shows the distribution of scores, S(x), normalised by dividing by
gth, i.e. as an average number of bits per molecule. If we had not nor-
by length, the distribution would have been much more spread out.
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Figure 3.2 The histogram of the length-normalised scores for all the se-
quences. CpG islands are shown with dark grey and non- CpG with light

grey.
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3.2 Hidden Markov models 57

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 6511654531325512455355545315356531523254552352ﬁ6555525151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441555566553554324354131513#65146353411125414525253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 355153556455232534413561561153?525EEG52255255252255435353335
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolis of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

the model as described earlier. Each roll was generated either with the fair die
(F) or the loaded one (L), as shown below the outcome of the roll in Figure 3.5.
The Viterbi algorithm was used to predict the state sequence, i.e. which die was
used for each of the rolls. Generally, as you can see, the Viterbi algorithm has
recovered the state sequence fairly well. O

Exercise
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Viterbi Traceback

® Above finds probability of best path

® To find the path itself, trace backward to
state k attaining the max at each stage




Yet to come

® More on HMMs:
® Viterbi, forward, backward
® Posterior decoding
® Training: Viterbi & Baum-VVelch

® Model structure
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3.2 Hidden Markov models 57

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls 6511654531325512455355545315356531523254552352ﬁ6555525151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441555566553554324354131513#65146353411125414525253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls 355153556455232534413561561153?525EEG52255255252255435353335
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolis of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

the model as described earlier. Each roll was generated either with the fair die
(F) or the loaded one (L), as shown below the outcome of the roll in Figure 3.5.
The Viterbi algorithm was used to predict the state sequence, i.e. which die was
used for each of the rolls. Generally, as you can see, the Viterbi algorithm has
recovered the state sequence fairly well. O

Exercise
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P(fair)

0 50 100 150 200 250 300

Figure 3.6 The posterior probability of being in the state corresponding to
the fair die in the casino example. The x axis shows the number of the roll.
The shaded areas show when the roll was generated by the loaded die.

The first approach is to define a state sequence #; that can be used in place of

L]
T

ft; = arg?'lax P(m; =k|x). (3.15)
As suggested by its definition, this state sequence may be more appropriate when
we are interested in the state assignment at a particular point i, rather than the
complete path. In fact, the state sequence defined by #; may not be particularly
likely as a path through the entire model; it may even not be a legitimate path at
all if some transitions are not permitted, which is normally the case.

The second, and perhaps more important, new decoding approach arises when
it is not the state sequence itself which is of interest, but some other property
derived from it. Assume we have a function g(k) defined on the states. The
natural value to look at then is

ﬂ’ﬁlﬂ:i Pl — Flvhad Y e T
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Example: The occasionally dishonest casino, part 5

We are suspicious that a casino is operated as described in the example on p. 54,
but we do not know for certain. Night after night we collect data by simply ob-
serving rolls. When we have enough, we want to estimate a model. Assume the
data we collected were the 300 rolls shown in Figure 3.5. From this sequence of
observations a model was estimated by the Baum—Welch algorithm. Initially all
the probabilities were set to random numbers. Here are diagrams of the model
that generated the data (identical to the one in the example on p. 54) and the esti-

mated model.
0.95 0.9 0.73 0.71

: ﬂ.{l?

: 010

Learned
Model
(300 rolls)

You can see they are fairly similar, although the estimated transition probabilities
are quite different from the real ones. This is partly a problem of local minima,
and by trying more times it is actually possible to obtain a model closer to the cor-
rect one. However, from a limited amount of data it is never possible to estimate
the parameters exactly.

Fair Loaded Fair Loaded

To illustrate the last point, 30 000 random rolls were generated (data are not




66 3 Markov chains and hidden Markov models

shown!), and a model was estimated. This came very close to the correct one:
0.93 0.88

: 07

o7 a3 Model

s 017

Fair Loaded

To see how good these models are compared to just assuming a fair die all the

time, the log-odds per roll was calculated using the 300 observations for the three
models:

The correct model 0.101 bits

Model estimated from 300 rolls 0.097 bits
Model estimated from 30000 rolls  0.100 bits

The worst model estimated from 300 rolls has almost the same log-odds as the
two other models. That is because it is being tested on the same data as it was
estimated from. Testing it on an independent set of rolls yields significantly lower
log-odds than the other two models. O

Exercises
3.5 Derive the result (3.19). Use the fact that

P(ri =k, =1x,0)= Px,m =k,miy =1|0),

P(x|0)

Learned

o[ [s o (30,000 rolls)
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Helis
HBA_HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLBS5_PETMA
LGBZ2_LUPLU
GLB1_GLYDI
Consensus

Helix
HBA_HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLES_PETMA
LGB2_LUPLU
GLBl1_GLYDI
Consensus

Helix
HBA_HUMAN
HBB_HUMAN
MYG_PHYCA
GLB3_CHITP
GLB5_PETMA
LGB2_LUPLU
GLB1_GLYDI
Consensus

ADAPARAPPAPMARMARA BEBBBEEBEBBBBEBBBCCCCCCCCCCC
————————— VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
———————— VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVY PWTQRFFESF
————————— VLSEGEWQLVLHVWAKVEA=--DVAGHGQDILIRLFKSHPETLEKFDRF
—————————— LSADQISTVQASFDKVKG------DPVGILYAVFKADPSIMAKFTQF
PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
———————— GALTESQAALVESSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
--------- GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPOMAAVFG-F

Ls.... vaWkv. ., g L.. £ . P F F

DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF
-DLS-~-~-- HGSAQVKGHGKKVADALTNAVAHV - - -D--DMPNALSALSDLHAHKL-

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL - - -D- -NLKGTFATLSELHCDKL-

KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-
AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
KGLTTADQLKKSADVRWHAERI INAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF -

LE-GTSEVPONNPELQAHAGKVFKLVYEAATIQLOVTGVVVTDATLENLGSVHVSKG-
5G----AS---DPGVAALGAKVLAQIGVAVSHL- -GDEGKMVAQMKAVGVRHEGYGN
t .« « v..Hg kv. a a...1 d al. 1l H

FFGGGGGGGGGGGGGGGGGGG HHHHHHHHHHHHHHHHHHHHHHHHHH
—RVDPVNFELLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR--— - —-
~HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------
~KIPIKYLEFISEAITHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
- -VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM-——— - ———
-OVDPOYFEVLAAVIADTVAAG---—-=-=-—— DAGFEKLMSMICILLRSAY-------
--VADAHFPVVEEATILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKEEMNDAA - ——
KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLOS-————

V. £ 1 . .. e f aa. k. 1 sky

Figure 5.1 An alignment of seven globins from Bashford, Chothia &
Lesk [1987]. To the left is the protein identifier in the SWISS-PROT
database [Bairoch & Apweiler 1997]. The eight alpha helices are shown as
A-H above the alignment. A consensus line below the alignment indicates
residues that are identical among at least six of the seven sequences in upper
case, ones identical in four or five sequences in lower case, and positions
where there is a residue identical in three sequences with a dot.




Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM. We use diamonds 1o
indicate the insert states and and circles for the delete states.

Mij: Match states (20 emission probabilities)
i Insert states (Background emission probabilities)
Dj: Delete states (silent - no emission)
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LL/length

Likelihood vs Odds Scores
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Figure 5.5 To the left the length-normalized LL score is shown as a function
of sequence length. The right plot shows the same for the log-odds score.




Z-Scores

Z-score from LL
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Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).
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