### CSE 527 Lecture 7

Relative entropy
Convergence of EM
Weight matrix motif models

#### Talk this week

• COMBI/GS Seminar
Thomas R. Gingeras, Ph.D.
"Empirical Analysis of Sites of RNA
Transcription for 30% of the Human
Genome: The Changing Landscape of
the Human Genome Annotations"

Wednesday, October, 20, 2004 3:30 pm, Hitchcock 132

• Refreshments in lobby at 3:20

#### Relative Entropy

- AKA Kullback-Liebler Distance/Divergence, AKA Information Content
- Given distributions P, Q

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)}$$

#### Notes:

Let 
$$P(x) \log \frac{P(x)}{Q(x)} = 0$$
 if  $P(x) = 0$  [since  $\lim_{y \to 0} y \log y = 0$ ]

Undefined if 0 = Q(x) < P(x)



### Theorem: $H(P||Q) \ge 0$

$$H(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

$$\geq \sum_{x} P(x) \left(1 - \frac{Q(x)}{P(x)}\right)$$

$$= \sum_{x} (P(x) - Q(x))$$

$$= \sum_{x} P(x) - \sum_{x} Q(x)$$

$$= 1 - 1$$

$$= 0$$

Furthermore: H(P||Q) = 0 if and only if P = Q

#### **EM** Convergence

```
Visible X
hidden /
Parameters &

Goal Maximum likelihood estimated &
in Find & maximizing Pr (x 10) (arlog Plub)

P(Y|X) = P(X,Y)/P(X) so P(X) = P(X,Y)/P(Y|X)

Hy:

Log P(X|0) = Log P(X,Y|0) - Log P(Y|X,0)

Log P(X|0) =

[y P(Y|X,0) - Log P(X,Y|0) - In P(Y|X,0)

Log P(Y|X,0)

Q(0|0)=)
```

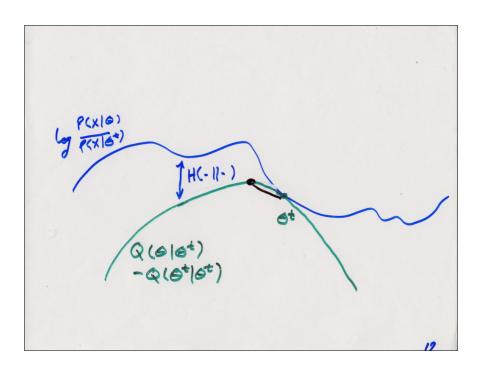
Ig 
$$P(x|G) = Q(G(G^{\dagger}) - I_{\gamma}P(\gamma|x_{j}G^{\dagger}) \cdot log P(\gamma|x_{j}G)$$

Akey trick: Q is easier to optimize them whole this.

(a) Ing  $P(x|G) - log P(x|G^{\dagger}) = Q(G^{\dagger}|G^{\dagger})$ 

(b)  $Q(G|G^{\dagger}) - Q(G^{\dagger}|G^{\dagger})$ 

(c)  $Q(G|G^{\dagger}) - Q(G^{\dagger}|G^{\dagger})$ 


(d)  $Q(Y|X_{j}G^{\dagger}) \cdot log \frac{P(Y|X_{j}G^{\dagger})}{P(Y|X_{j}G^{\dagger})}$ 

(e)  $Q(G|G^{\dagger}) - Q(G^{\dagger}|G^{\dagger})$ 

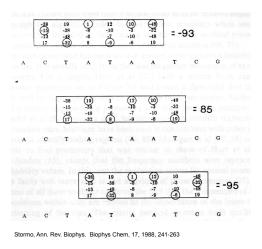
(f)  $Q(Y|X_{j}G^{\dagger}) \cdot log \frac{P(Y|X_{j}G^{\dagger})}{P(Y|X_{j}G^{\dagger})}$ 

(f)  $Q(Y|X_{j}G^{\dagger}) \cdot log \frac{P(Y|X_{j}G^{\dagger})}{P(Y|X_{j}G^{\dagger})}$ 

(g)  $Q(Y|X_{j}G^{\dagger}) \cdot log \frac{P(Y|X_{j}G^{\dagger})}{P(Y|X_{j}G^{\dagger})}$ 



#### Sequence Motifs


#### E. coli Promoters

- "TATA Box" consensus TATAAT ~ 10bp upstream of transcription start
- Not exact: of 168 studied
  - nearly all had 2/3 of TAxyzT
  - 80-90% had all 3
  - 50% agreed in each of x,y,z
  - no perfect match
- Other common features at -35, etc.

#### TATA Box Frequencies

| pos<br>base | 1  | 2  | 3  | 4  | 5  | 6  |
|-------------|----|----|----|----|----|----|
| Α           | 2  | 95 | 26 | 59 | 51 | 1  |
| С           | 9  | 2  | 14 | 13 | 20 | 3  |
| G           | 10 | 1  | 16 | 15 | 13 | 0  |
| Т           | 79 | 3  | 44 | 13 | 17 | 96 |

## Scanning for TATA



# Weight Matrices: Chemistry

 Experiments show ~80% correlation of log likelihood weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus

# Weight Matrices: Statistics

Assume:

fb,i = frequency of base b in position i

fb = frequency of base b in all sequences

• Log likelihood ratio, given S = B<sub>1</sub>B<sub>2</sub>...B<sub>6</sub>:

$$\log\left(\frac{P(S \mid \text{"promoter"})}{P(S \mid \text{"nonpromoter"})}\right) = \log\left(\frac{\prod_{i=1}^{6} f_{B_i,i}}{\prod_{i=1}^{6} f_{B_i}}\right) = \sum_{i=1}^{6} \log\left(\frac{f_{B_i,i}}{f_{B_i}}\right)$$