CSE 527

Lecture 9
The Gibbs Sampler

Talk Today

- Zasha Weinberg

Combi
HSB K-069, I:30
"Fast, accurate annotation of non-coding RNAs"

The "Gibbs Sampler"

- Lawrence et al."Detecting Subtle Sequence Signals:A Gibbs Sampling Strategy for Multiple Sequence Alignment" Science 1993

The Double Helix

Sigma-37	223	IIDLTYIQNK	SQKETGDILGISQMHVSR	LQRKAVKKLR	
Spoilic	94	RFGLDLKKEK	TQREIAKELGISRSYVS	IEKRALM	1
Nahr	22	VVFNQLLVDR	RVSITAENLGLTPPAVSN	ALKRLRTSLQ	39
Antennapedia	326	FHFNRYLTRR	RRIEIAHALCLTERQIKI	WFQNRRMKWK	43
NtrC (Brady.)	449	LTAALAATRG	NQIRAADLLGLNRNTLRK	KIRDLDIQVY	466
DicA	22	IRYRRKNLKH	TQRSLAKALKISHVSVSQ	WERGDSEPTG	39
MerD	5	MNAY	TVSRLALDAGVSVHIVRD	YLLRGLLRP	22
Fis	73	LDMVMQYTRG	NQTRAALMMGINRGTLRK	KLKKYGMN	90
MAT 11	99	FRRKQSLNSK	EKEEVAKKCGITPLQVRV	WFINKRMRSK	16
Lambda cII	25	SALLNKIAML	GTEKTAEAVGVDKSQISR	WKRDWIPKFS	42
Crp (CAP)	169	THPDGMQIKI	TRQEIGQIVGCSRETVGR	ILKMLEDQNL	6
Lambda Cro	15	ITLKDYAMRF	GQTKTAKDLGVYQSAINK	AIHAGRKIFL	32
P22 Cro	12	YKKDVIDHFG	TQRAVAKALGISDAAVSQ	WKÉvIPEKD	29
Arac	196	ISDHLADSNF	DIASVAQHVCLSPSRLSH	LFRQQLGISV	213
Fnr	196	FSPREFRLTM	TRGDIGNYLGLTVETISR	LLGRFQKSGM	213
Htpr	252	ARWLDEDNKS	TLQELADRYGVSAERVRQ	LEKNAMKKLR	269
NtrC (K.a.)	444	LTTALRHTQG	HKQEAARLLGWGRNTLTR	KLKE	461
Cytr	11	MKAKKQETAA	TMKDVALKAKVSTATVS	ALMNPDKVS	28
Deor	23	LQELKRSDKL	HLKDAAALLGVSEMTIRR	DLNNHSAPV	40
GalR	3	MA	TIKDVARLAGVSVATVSR	VINNSPKASE	20
LacI	5	MKPV	TLYDVAEYAGVSYQTVSR	VVNQASHVSA	22
TetR	26	LLNEVGIEGL	TTRKLAQKLGVEQPTLYW	HVKNKRALLD	43
TrpR	67	IVEELLRGEM	SQRELKNELGAGIATITR	GSNSLKAAPV	34
Nifa	495	LIAALEKAGW	VQAKAARLLGMTPRQVAY	RIQIMDITMP	512
Spoilg	205	RFGLVGEEEK	TQKDVADMMGISQSYISR	LEKRIIKRLR	222
Pin	160	QAGRLIAAGT	PRQKVAIIYDVGVSTLYK	TFPAGDK	177
PurR	- 3	MA	TIKDVAKRANVSTTTVSH	VINKTRFVAE	20
EbgR	3	MA	TLKDIAIEAGVSLATVSR	VLNDDPTLINV	20
LexA	27	DHISQTGMPP	TRAEIAQRLGFRSPNAAE	EHLKALARKG	44
P22 cI	25	SSILNRIAIR	GQRKVADALGINESQISR	WKGDFIPKMG	42

A25944
A28627
A32837
A 232837
A 2340
A234599
B24328 (BVECDA)
C29010
A32142 (DNECFS)
A90983 (JEBY1)
A03579 (QCBP2L)
A03553 (QRECC)
03577 (RCBPL)
A03554 (RGECA)
A03552 (RGECF)
A00700 (RGECH)
A03564 (RGKBCP)
A24963 (RPECCT)
A24076 (RPECDO)
A03559 (RPECG)
A03558 (RPECL)
A03576 (RPECTN)
A03568 (RPECW)
502513
S07337
S07958
S08477
S 09205
S09205
S11945
B25867 (Z1BPC2)

Some History

	-
	N
	ω
	-
	\cdots
	\%
	$\stackrel{ }{\sim}$
	む
	\pm
	宛
	$\stackrel{ }{6}$
	ॐ
	$\stackrel{\rightharpoonup}{\infty}$

- Geman \& Geman, IEEE PAMI I984
- Hastings, Biometrika, 1970
- Metropolis, Rosenbluth, Rosenbluth,Teller, \& Teller, "Equations of State Calculations by Fast Computing Machines," J. Chem. Phys. 1953
- Josiah Williard Gibbs, I839-1903, American physicist, a pioneer of thermodynamics

How to Average

- An old problem:
- n random variables:

$$
x_{1}, x_{2}, \ldots, x_{k}
$$

- Joint distribution (p.d.f.): $P\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
- Some function: $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
- Want Expected Value:
$E\left(f\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)$

Markov Chain Monte Carlo (MCMC)

- Independent sampling also often hard, but not required for expectation
- MCMC $\quad \vec{X}_{t+1} \mid \vec{X}_{t}$
- Simplest \& most common: Gibbs Sampling

$$
P\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

- Algorithm

$E\left(f\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)=$

$\int_{x_{1}} \int_{x_{2}} \cdots \int_{x_{k}} f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \cdot P\left(x_{1}, x_{2}, \ldots, x_{k}\right) d x_{1} d x_{2} \ldots d x_{k}$

- Approach I: direct integration (rarely solvable analytically, esp. in high dim)
- Approach 2: numerical integration (often difficult, e.g., unstable, esp. in high dim)
- Approach 3: Monte Carlo integration
sample $\vec{x}^{(1)}, \vec{x}^{(2)}, \ldots \vec{x}^{(n)} \sim p(\vec{x})$ and average:

$$
E(f(\vec{x})) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(\vec{x}^{(i)}\right)
$$

- Input: again assume sequences sl, ..., sk with one length w motif per sequence
- Motif model:WMM
- Parameters:Where are the motifs? for $\mathrm{I}<=\mathrm{i}<=\mathrm{k}$, have $\mathrm{I}<=\mathrm{xi}<=|\mathrm{si}|-\mathrm{w}+\mathrm{l}$
- "Full conditional": to calc
$P\left(x_{i}=j \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)$
build WMM from motifs in all sequences except i, then calc prob that motif in ith seq occurs at j by usual "scanning" alg.

Randomly initialize xi's
for $t=1$ to ∞
for $i=1$ to k
discard motif instance from si;
Similar to
MEME, but it
would recalc WMM from rest
average over,
rather than
sample from
for $j=1 . . .|s i|-w+1$ calculate prob that ith motif is at j :
$\Longrightarrow P\left(x_{i}=j \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)$ pick new xi according to that distribution

Issues

- Burnin - how long must we run the chain to reach stationarity?
- Mixing - how long a post-burnin sample must we take to get a good sample of the stationary distribution? (Recall that individual samples are not independent, and may not "move" freely through the sample space.)

Variants \& Extensions

- "Phase Shift" - may settle on suboptimal solution that overlaps part of motif. Periodically try moving all motif instances a few spaces left or right.
- Algorithmic adjustment of pattern width: Periodically add/remove flanking positions to maximize (roughly) average relative entropy per position
- Multiple patterns per string

