More Motifs

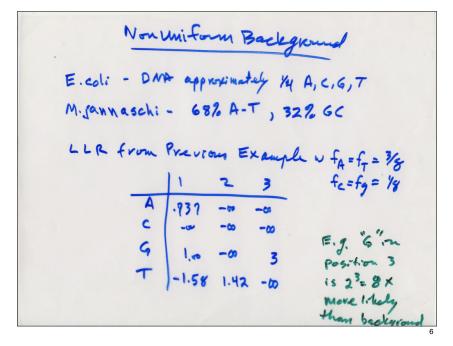
WMM, log odds scores, Neyman-Pearson, background; Greedy & EM for motif discovery

Talks this week

- Tue, 3:30 EE-105, Me "The Search for Non-Coding RNA"
- Wed, I:30 K-069, Zasha Weinberg "something similar..."

Neyman-Pearson

- Given a sample x1, x2, ..., xn, from a distribution f(Theta; ...) with parameter Theta, want to test hypothesis Theta = theta1 vs Theta=theta2.
- Might as well look at likelihood ratio f(theta1; x1, x2,...xn)/f(theta2; x1, x2,...xn) > tau


What's best WMM?

- Given 20 sequences s1, s2, ... of length 8, assumed to be generated at random according to a WMM defined by 8 x (4-1) parameters theta, what's the best theta?
- E.g., what MLE for theta given data s1, s2...?
- Answer: count frequencies per position.

_

3

For WMM, can show

H(PIIQ) = \(\sum_{i=1}^{M} \text{H(PiIIQi)} \)

where Pi, Qi are distributions of it position

[Follows from assumption of independence]

				5			
E,	cample (est.)	1	2 3			
	' -	A 4 6	625	000			
	1	2	3		020	2 3	_
A C	1.32	-00	-60	A C			
4	0	-00	2 -00	4	-1.58	1.42 -00	
	.701	2	2	(cd. €st.	.512	1.42 3.0	
Rel.Eut.	un:form			Non- Un: from			

Pseudo counts

Are the - 00 's a problem?

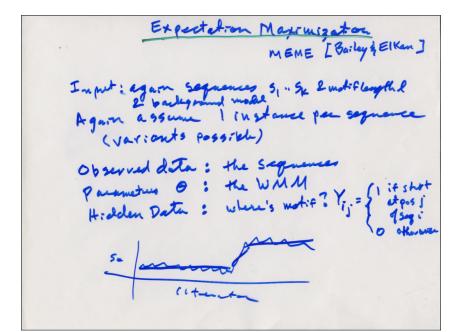
- if you are certain a given regidue never occurs in a given possition, then 00 is just right
- If not, then its protably an artifact of Small Sample Typical fix:

adel a smell constant (eg .5,1,2) to all observed counts - a <u>essent</u>

Questions

- · Given aligned instances of Motifs, How do you build model? Frequency counts, as above
- · Given model, how do you find (probable) sustances? Scanning
- · Given unaligned strongs thought to contain a motif, how do you findit? Eg. upstream regions from marray cluster

Motif Discovery Three Approachs


- O Greedy Seach
- @ Expectation Maximization
- 3 Gibb Sampler
 - PS. Finding the site of max relative entropy in a set of unaligned sequences is NI-hard (AKU+SU)

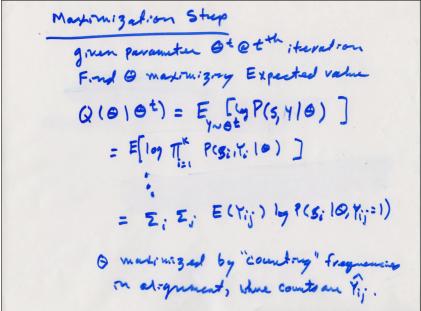
-

GREEDY Algorithm [Hertzestormo]

Impits
Sequences Si. Sk , motifleogth l, "breadth"d,
Algorithm

- 1. Create a singleton set with each length & sub sequence of each of Si " Sic
- 2. For each set returned odd each possible bugth I subseq not already present
- 3. Compute valative entropy of each retarn of best.
- 4. Repeat until each set to K strongs. NB: usual 6 veedy explesses

Expectation Step


$$\hat{Y}_{i|k} = E(Y_{i|k} | S_{i}, \Theta)$$

$$= P(Y_{i|k=1} | S_{i}, \Theta)$$

$$= P(S_{i} | Y_{i|k=1}, \Theta) P(Y_{i|k=1} | \Theta)$$

$$= P(S_{i} | Y_{i|k=1}, \Theta)$$

$$= P(S_{i} | Y_{i|k=$$

Initialization

- 1. Buy a supercomputer; call it SDSC
- 2. Try every mot: F-length substraig & use WMM with, say, 80% of mass on that sequence, rost uniform
- 3. Run a couple of iterations of each;
- 4. Run best few to convergence