More Motifs

WMM, log odds scores, Neyman-Pearson, background; Greedy & EM for motif discovery

Talks this week

- Tue, 3:30 EE-105, Me
 "The Search for Non-Coding RNA"
- Wed, I:30 K-069, Zasha Weinberg "something similar..."

Neyman-Pearson

- Given a sample x I, x2, ..., xn, from a distribution f(Theta; ...) with parameter Theta, want to test hypothesis Theta = theta I vs Theta=theta2.
- Might as well look at likelihood ratio
 f(theta I; x I, x 2,...xn)/f(theta 2; x I, x 2,...xn) >
 tau

What's best WMM?

- Given 20 sequences s1, s2, ... of length 8, assumed to be generated at random according to a WMM defined by 8 x (4-1) parameters theta, what's the best theta?
- E.g., what MLE for theta given data s1, s2...?
- Answer: count frequencies per position.

Weight Matrix Example

8 5	ey vences	Prote	1	2 3
	ATG	A	.625	00
	ATG	(0	00
	ATG	6	.250	01
	ATG	T	,125	
	ATG		"	
	GTG	Log		2 3
	GTG	Ratio -	11	-00 -00
	TTG	A.	1.72	-00 -00
,	loga fxi	,i fx=1/4	0 -1	-0 Z 2 -0

Non Uniform Background

E.coli - DMA approximately 14 A, C,G,T M.Jannaschi - 68% A-T, 32% GC

move likely

than background

How "Informative" isa WMM?

Recall Relative Entropy

H(PI(Q) = \(\frac{\text{P(X)}}{\text{V}}\)\log_2 \(\frac{P(X)}{\text{Q(X)}}\)

If X are sequences (fixed length)

P(X) = Pvob. of X according to WMM (orothered)

Q(X) = Background model

H(P(Q) is expected log likelihood score

1 a variety chosen site (variety

according to site model)

For WMM, can show

H(PIIQ) = \(\sum_{i=1}^{M} \text{H(Pi IIQi)} \)

where Pi, Qi are distributions of ith position

[Follows from assumption of independence]

E	xumple (cont.)	1	2 3			
		A 46	625	0000			
	1	2	3	1	l,	2 3	
n	1.32	-00	-00	A	.737	- 20 - 50	
A		-00	-00		- 0	-00-00	
	- 60	-00	2	6	1.00	-10 3.00	
T	-1	2	-0	1	-1.58	1.42 -00	
	201	2	2	(ol. Est.	.512	1.42 3.0	
Rel.Eut.	.201			11	1	n. uniform	
	un:form			MON. COM. LOAD			

Pseudo counts

Are the - 00 's a problem?

- if you are certain a given regidue never occurs in a given paquitron, thum 00 is j'untright
 - 1f not, then its protably an artifact of Small sample

Typreal fix:
adel a smell constant (eg. 5,1,2)
to all a beeved counts - a pseudout

Questions

- · Given aligned instances of Motifs, How do you build model? Frequency counts, as above
 - · Given model, how do you find (protable) sustances? Scanning
 - · Given unaliqued strings thought to contain a motif, how do you findit? Eg. upstream regions from marray chester

Motif Discovery Three Approachs

O Greedy Search

3 Expectation Maximization

3 Gibb Sampler

P.S. Finding the site of max relative antropy in a set of unaligned sequences is Ne-hard (AKUtsu)

GREEDY Algorithm [Hertz & Stormo]

Input's , motiflythel, "breadth"d, Sequences Si.

- 1. Create a singleton set with each length I sub sequence of each of 5, " 5k
- 2. For each set returned add enclossile bugth I subseq not already present
- 3. Compute veletive entropy of each M. Repeat until each set to K strongs. NB: usual 6 vecely proflems

Expectation Maximization MEME [Bailey & Elkan]

Input: again sequences 5, " Sk 2 motifleagthel Again assume l'instance par segnence (variouts possible)

Observed data: the Sequences

Parametus 8: the WMM

Hidden Data: where's wotif? " ij = } at pos

Expectation Step

$$\frac{1}{Y_{ik}} = E(Y_{ik} | S_i, \Theta) \\
= P(Y_{ik} = 1 | S_i, \Theta) \\
= P(S_i | Y_{ik} = 1, \Theta)$$

Maximization Step given parameter & eth iteration Find & maximizing Expected value Q(010t) = E [4P(5,410)] = E[109 TK P(5:17:10)] = Z; Z; E(Yij) 19 ? (5; 10, Yij=1)

o madinized by "counting" fragmencies in alignment, where counts are \hat{Y}_{ij} .

Initialization

- 1. Buy a supercomputer; callit SDSC
- 2. Try every mot: F- length substrange 2 wee WMM with, say, 80% of mass on that sequence, rest uniform
 - 3. Run a couple of iterations of each;
 - 4. Run best frew to convergence