

Outline

- What is it
- How is it Represented
- Why is it important
- Examples
- Approaches

RNA Pairing

- Watson-Crick Pairing
- C-G
~ $3 \mathrm{kcal} / \mathrm{mole}$
- A - U
~ $2 \mathrm{kcal} /$ mole
- "Wobble Pair" G - U
~ | kcal/mole
- Non-canonical Pairs (esp. if modified)

A "Mountain" diagram

Figure 3: Mountain representation of the tRNA secondary structure shown in Figure 1. Th three plateaus correspond to the three hairpin loops of the clover leave structure.

Importance

- Ribozymes (RNA Enzymes)
- Retroviruses
- Effects on transcription, translation, splicing...
- Functional RNAs: rRNA, tRNA, snRNA, snoRNA, micro RNA, RNAi, riboswitches, regulatory elements in $3^{\prime} \& 5$ ' UTRs, ...

Definitions

- Sequence ${ }^{5} r_{1} r_{2} r_{3} \ldots r_{n}{ }^{3 \prime}$ in $\{A, C, G, T\}$
- A Secondary Structure is a set of pairs i•j s.t.
I. $\mathrm{i}<\mathrm{j}-4$
2.if $i \cdot j$ \& $i^{\prime} \cdot{ }^{\prime}$ ' are two pairs with $i \leq i \prime$, then

$$
\begin{aligned}
& \text { A. } i=i^{\prime} \& j=j^{\prime} \text {, or } \\
& \left.\begin{array}{l}
\text { B. } \mathrm{j}<\mathrm{i}, \text { or } \\
\text { C. } i<i^{\prime}<j<j
\end{array}\right\} \begin{array}{l}
\text { First pair precedes 2nd, } \\
\text { or is nested within it. } \\
\text { No "pseudoknots." }
\end{array}
\end{aligned}
$$

The eorrepponding seocondary struelure is:

```
3:- A-GG-c-0/f
    T-C-CG-A-GGG-G
    TaC-C-C-5-5
    C--T-C/
```

A Pseudoknot

Approaches to Structure Prediction

- Maximum Pairing
+ simple
- too inaccurate
- Minimum Energy
+ Works on single sequences
- Ignores pseudoknots
- Only finds "optimal" fold
- Partition Function
+ Finds all folds
- Ignores pseudoknots

Nussinov: Max Pairing

- $B(i, j)=\#$ pairs in optimal pairing of ri ... rj
- $B(i, j)=0$ for all i, j with $i \geq j-4$; otherwise
- $B(i, j)=$ max of:
I. $B(i+1, j)$

2. $B(i, j-1)$
3. $B(i+I, j-I)+(i f$ ri pairs with rj then I else 0)
4. $\max \{B(i, k)+B(k+1, j) \mid i<k<j\}$

Loop-based Energy Minimization

- Detailed experiments show that it's more accurate to model based on loops, rather than just pairs
- Loop types
- Stack
- Hairpin loop
- Bulge
- Interior loop

Zuker: Loop-based Energy, I

- $W(\mathrm{i}, \mathrm{j})=$ energy of optimal pairing of ri ... rj
- $\mathrm{V}(\mathrm{i}, \mathrm{j})=$ as above, but forcing pair $\mathrm{i} \bullet \mathrm{j}$
- $W(i, j)=V(i, j)=\infty$ for all i, j with $i \geq j-4$
$\bullet W(i, j)=\min (W(i+1, j), W(i, j-I), V(i+I, j-I)$, $\min \{E(i, k)+E(k+1, j) \mid i<k<j\})$

Zuker: Loop-based Energy, II

$$
\begin{array}{cc}
& \text { bulge/ multi- } \\
\text { hairpin stack } & \text { interior } \\
\text { loop }
\end{array}
$$

 VM(i,j))

- $\mathrm{VM}(\mathrm{i}, \mathrm{j})=\min \{\mathrm{W}(\mathrm{i}, \mathrm{k})+\mathrm{W}(\mathrm{k}+\mathrm{I}, \mathrm{j}) \mid \mathrm{i}<\mathrm{k}<\mathrm{j}\})$
\bullet VBI $(i, j)=\min \left\{e b i\left(i, j, i, j ; j^{\prime}\right)+V\left(i, j, j^{\prime}\right) \mid\right.$
Time: $O\left(n^{4}\right)$
$\mathrm{O}\left(\mathrm{n}^{3}\right)$ possible if ebi(.) is "nice"

Suboptimal Energy

- There are always alternate folds with near-optimal energies. Thermodynamics predicts that populations of identical molecules will exist in different folds; individual molecules even flicker among different folds
- Zuker's algorithm can be modified to find suboptimal folds
- McCaskill gives a more elaborate dynamic programming algorithm calculating the "partition function," which defines the probability distribution over all these states.

