CSE 527 Lecture 17, 11/24/04

RNA Secondary Structure Prediction

RNA Structure

• Primary Structure: Sequence

• Secondary Structure: Pairing

• Tertiary Structure: 3D shape

Outline

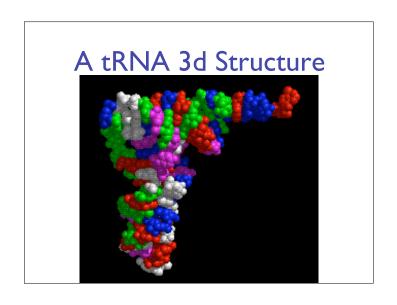
- What is it
- How is it Represented
- Why is it important
- Examples
- Approaches

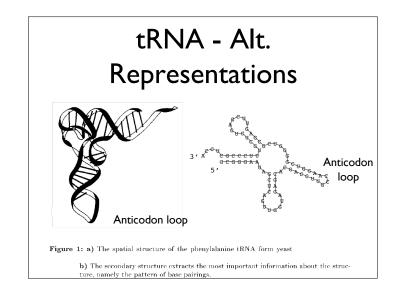
RNA Pairing

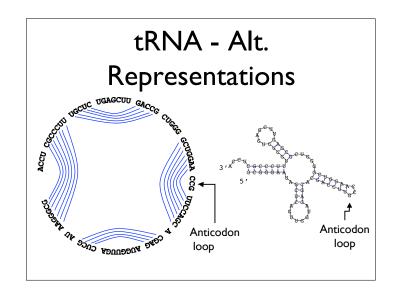
• Watson-Crick Pairing

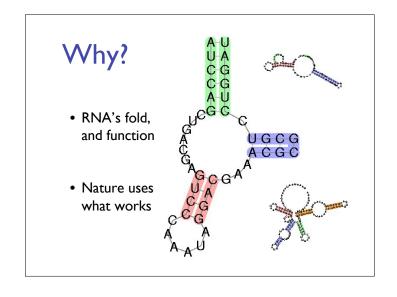
• C - G

~ 3 kcal/mole

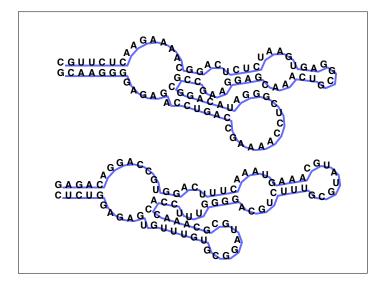

• A - U


~ 2 kcal/mole


• "Wobble Pair" G - U


~ I kcal/mole

• Non-canonical Pairs (esp. if modified)



Importance

- Ribozymes (RNA Enzymes)
- Retroviruses
- Effects on transcription, translation, splicing...
- Functional RNAs: rRNA, tRNA, snRNA, snoRNA, micro RNA, RNAi, riboswitches, regulatory elements in 3' & 5' UTRs, ...

RNA Pairing

- Watson-Crick Pairing
 - C G

~ 3 kcal/mole

• A - U

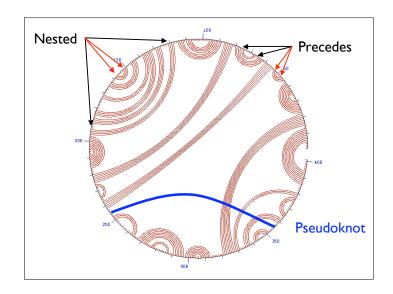
~ 2 kcal/mole

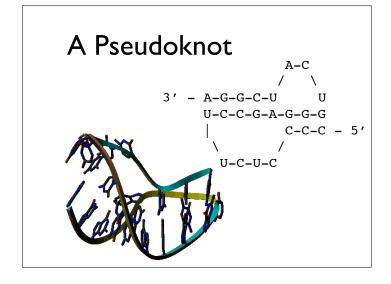
• "Wobble Pair" G - U

~ I kcal/mole

• Non-canonical Pairs (esp. if modified)

Definitions


- Sequence ${}^{5'}$ r_1 r_2 r_3 ... r_n ${}^{3'}$ in {A, C, G, T}
- A Secondary Structure is a set of pairs i•j s.t.
 - 1. i < j-4
 - 2. if i•j & i'•j' are two pairs with $i \le i'$, then


A.
$$i = i' \& j = j'$$
, or

B. j < i', or

C. i < i' < j' < j

First pair precedes 2nd, or is nested within it. No "pseudoknots."

Approaches to Structure Prediction

- Maximum Pairing
 - + works on single sequences
 - + simple
 - too inaccurate
- Minimum Energy
 - + works on single sequences
 - ignores pseudoknots
 - only finds "optimal" fold
- Partition Function
 - + finds all folds
 - ignores pseudoknots

Approaches, II

- Comparative sequence analysis
 - + handles all pairings (incl. pseudoknots)
 - requires several (many?) aligned, appropriately diverged sequences
- Stochastic Context-free Grammars
 Roughly combines min energy & comparative, but no pseudoknots
- Physical experiments (x-ray crystalography, NMR)

Nussinov: Max Pairing

- B(i,j) = # pairs in optimal pairing of $r_i \dots r_j$
- B(i,j) = 0 for all i, j with $i \ge j-4$; otherwise
- $B(i,j) = \max of$:
 - B(i+1,j)
 - 2. B(i,j-1)
 - 3. $B(i+1,j-1) + (if r_i pairs with r_i then 1 else 0)$
 - 4. $\max \{ B(i,k)+B(k+1,j) \mid i < k < j \}$

Time: O(n³)

Pair-based Energy Minimization

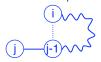
- E(i,j) = energy of pairs in optimal pairing of $r_i ... r_i$
- $E(i,j) = \infty$ for all i, j with $i \ge j-4$; otherwise
- E(i,j) = min of:
 - E(i+1,j)
 - E(i,j-1) energy of one pair
 - $E(i+1,j-1) + e(r_i, r_i)$

Time: $O(n^3)$

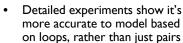
min { E(i,k)+E(k+1,j) | i < k < j }

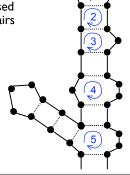
"optimal pairing of $r_i ... r_i$ "

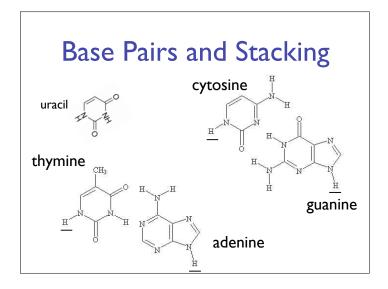
Several (overlapping, but exhaustive) possibilities

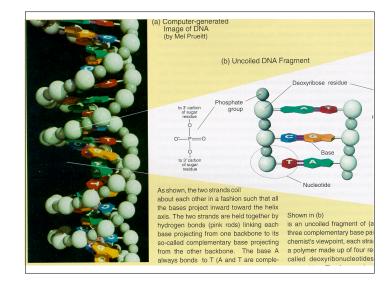

 $I.r_i$ is unpaired; look at best way to pair $r_{i+1} ... r_i$

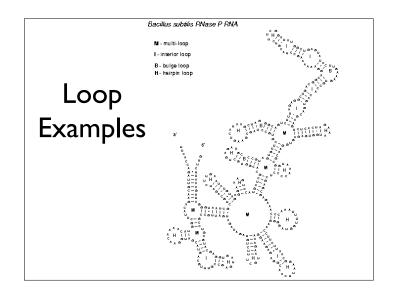
3. they pair with each other, so 1 + best $r_{i+1} ... r_{j-1}$


 $2.r_j$ is unpaired; look at best way to pair $r_i ... r_{i-1}$


4. They pair, but not to each other;


i pairs with k for some i < k < j; so look at best $r_i \dots r_k + \text{best } r_{k+1} \dots r_j$ (don't need to look at other k; why?)


Loop-based Energy Minimization

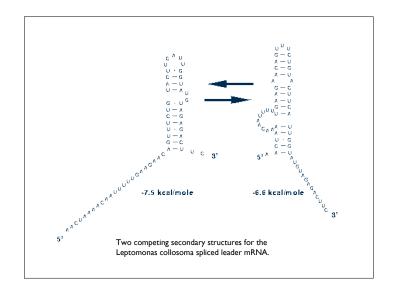


- Loop types
 - I. Hairpin loop
 - 2. Stack
 - 3. Bulge
 - 4. Interior loop
 - 5. Multiloop

Zuker: Loop-based Energy, I

- W(i,j) = energy of optimal pairing of $r_i ... r_j$
- V(i,j) = as above, but forcing pair i•j
- $W(i,j) = V(i,j) = \infty$ for all i, j with $i \ge j-4$
- $W(i,j) = min(W(i+1,j), W(i,j-1), V(i+1,j-1), min \{ E(i,k)+E(k+1,j) | i < k < j \})$

Zuker: Loop-based Energy, II

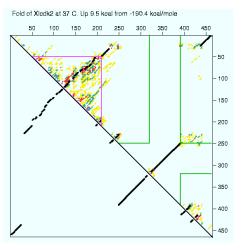

hairpin stack

bulge/ multiinterior loop

- V(i,j) =min(eh(i,j), es(i,j)+V(i+1,j-1), VBI(i,j), VM(i,j))
- $VM(i,j) = min \{ W(i,k)+W(k+1,j) \mid i < k < j \})$

Suboptimal Energy

- There are always alternate folds with near-optimal energies. Thermodynamics predicts that populations of identical molecules will exist in different folds; individual molecules even flicker among different folds
- Zuker's algorithm can be modified to find suboptimal folds
- McCaskill gives a more elaborate dynamic programming algorithm calculating the "partition function," which defines the probability distribution over all these states.



Black dots: pairs in opt fold

pairs in folds 2-5% worse than optimal fold

Colored dots:

A "Mountain" diagram

Figure 3: Mountain representation of the tRNA secondary structure shown in Figure 1. The three plateaus correspond to the three hairpin loops of the clover leave structure.