

This week

- Sequence alignment
- More sequence alignment
- Weekly "bio" interlude - DNA replication

Sequence Alignment

- What
- Why
- A Simple Algorithm
- Complexity Analysis
- A better Algorithm:
"Dynamic Programming"
Motivation, dynamic programming,
global alignment

CSE527, Au '06, Ruzzo

Sequence Similarity: What

G G ACCA

TACTAAG

TCCAAT

CSE527, Au '06, Ruzzo

Sequence Similarity: Why

- Most widely used comp. tools in biology
- New sequence always compared to sequence data bases

Similar sequences often have similar

 origin or functionSelection operates on system level, but mutation occurs at the sequence level
Recognizable similarity after $10^{8}-10^{9} \mathrm{yr}$

Sequence Similarity: What

G G ACCA

TACTAAG
|: |: | |:
TCC-AAT

CSE527, Au 06, Ruzzo

Sequence Alignment
acbcdb ac--bcdb
acbcdb ac--bcdb
cadbd - cadb-d-
cadbd - cadb-d-
Defn: An alignment of strings S, T is a pair of strings S^{\prime}, T^{\prime} (with spaces) s.t.
(1) $\left|S^{\prime}\right|=\left|T^{\prime}\right|$, and
(|S| = "length of S ")
(2) removing all spaces leaves S, T
CSE527, Au 06, Ruzzo
for all subseqs A of S, B of T s.t. $|A|=|B|$ do align $A[i]$ with $B[i], 1 \leq i \leq|A|$ align all other chars to spaces
compute its value retain the max

end

$$
\begin{array}{|ll|}
\hline S=a b c d & A=c d \\
T=w x y z & B=x z \\
-a b c-d & a-b c-d \\
w--x y z & -w-x y z \\
\hline
\end{array}
$$

output the retained alignment
CSE527, Au '06, Ruzzo 12

Analysis

- Assume $|\mathrm{S}|=|\mathrm{T}|=\mathrm{n}$
- Cost of evaluating one alignment: $\geq \mathrm{n}$
- How many alignments are there: $\geq\left(\begin{array}{c}2 n \\ n \\ n\end{array}\right)$
say k of them are in S
match these k to the k unpicked chars of T
- Total time: $\geq n\binom{2 n}{n}>2^{2 n}$, for $n>3$
E.g., for $n=20$, time is $>2^{40}$ operations

Asymptotic Analysis

How does run time grow as a function of problem size?

$$
n^{2} \text { or } 100 n^{2}+100 n+100 \text { vs } 2^{2 n}
$$

Defn: $f(n)=O(g(n))$ iff there is a constant c
s.t. $|f(n)| \leq c g(n)$ for all sufficiently large n.
$100 n^{2}+100 n+100=O\left(n^{2}\right) \quad$ [e.g. $\left.c=101\right]$
$\mathrm{n}^{2}=\mathrm{O}\left(2^{2 \mathrm{n}}\right)$
$2^{2 n}$ is not $O\left(n^{2}\right)$

Utility of Asymptotics

- "All things being equal," smaller asymptotic growth rate is better
- All things are never equal

Even so, big-O bounds often let you quickly pick most promising candidates among competing algorithms
Poly time algs often practical; non-poly algs seldom are.

Fibonacci, II

```
    int fib[n];
    fib[0] = 1;
    fib[1] = 1;
    for(i=2; i<=n; i++) {
        fib[i] = fib[i-1] + fib[i-2];
    }
    return fib[n];

Fibonacci Numbers
```

fib(n) {
if (n<= 1) {
return 1;
} else {
return fib(n-1) + fib(n-2);
}

Simple recursion, but many repeated subproblems!! $=>$ Time $=\Omega\left(1.61^{\mathrm{n}}\right)$

}

```

CSE527, Au 06, Ruzzo

\section*{Candidate for Dynamic \\ Programming?}
- Common Subproblems?
- Plausible: probably re-considering alignments of various small substrings unless we're careful
- Optimal Substructure?
- Plausible: left and right "halves" of an optimal alignment probably should be optimally aligned (though they obviously interact a bit at the interface).
- (Both made rigorous below.)

\section*{Optimal Substructure \\ (In More Detail)}
- Optimal alignment ends in 1 of 3 ways:
- last chars of S \& T aligned with each other
- last char of \(S\) aligned with space in \(T\)
- last char of T aligned with space in S
- ( never align space with space; \(\sigma(-,-)<0\) )
- In each case, the rest of S \& T should be optimally aligned to each other

\section*{Base Cases}

V(i,0): first i chars of \(S\) all match spaces
\[
V(i, 0)=\sum_{k=1}^{i} \sigma(S[k],-)
\]
- \(\mathrm{V}(0, \mathrm{j})\) : first j chars of T all match spaces
\[
V(0, j)=\sum_{k=1}^{j} \sigma(-, T[k])
\]

\section*{Optimal Alignment in \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) via "Dynamic Programming"}
- Input: S, T, \(|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}\)
- Output: value of optimal alignment

Easier to solve a "harder" problem:
\(V(i, j)=\) value of optimal alignment of \(\mathrm{S}[1], \ldots, \mathrm{S}[\mathrm{i}]\) with \(\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]\) for all \(0 \leq i \leq n, 0 \leq j \leq m\).

CSE527, Au 06, Ruzzo


Mismatch \(=-1\) Match \(=2\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|r|}{Example \(\begin{aligned} & \text { Mismatch }=-1 \\ & \text { Match }=2\end{aligned}\)} \\
\hline i & j & 0 & 1
c & 2
a & 3
\(d\) & 4
b & 5
\(d\) & \multirow[t]{3}{*}{\(\leftarrow \mathrm{T}\)} \\
\hline 0 & & 0 & -1 & -2 & -3 & -4 & -5 & \\
\hline 1 & a & -1 & -1 & 1 & & & & \\
\hline 2 & c & -2 & 1 & & & & & \multirow[t]{5}{*}{Time = \(\mathrm{O}(\mathrm{mn})\)} \\
\hline 3 & b & -3 & & & & & & \\
\hline 4 & c & -4 & & & & & & \\
\hline 5 & d & -5 & & & & & & \\
\hline 6 & b & -6 & & & & & & \\
\hline CSE527, Au '06, Ruzzo & § & & & & & & & 26 \\
\hline
\end{tabular}

Finding Alignments:
Trace Back
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline i & j & 0 & \begin{tabular}{l|}
1 \\
\(c\)
\end{tabular} & 2
a & 3
d & 4
b & 5
\(d\) & \multirow[t]{9}{*}{\(\leftarrow T\)} \\
\hline 0 & & (0) & - -1 & -2 & -3 & -4 & -5 & \\
\hline 1 & a & (-1) & -1 & (1) & 0 & -1 & -2 & \\
\hline 2 & c & -2 & (1) & 0 & (0) & -1 & -2 & \\
\hline 3 & b & -3 & (0) & (0) & -1 & (2) & 1 & \\
\hline 4 & c & -4 & -1 & -1 & -1 & (1) & 1 & \\
\hline 5 & d & -5 & -2 & -2 & (1) & 0 & (3) & \\
\hline 6 & b & -6 & -3 & -3 & 0 & (3) & - 2 & \\
\hline CSE527, Au '0, Ruzzo & S & & & & & & & \\
\hline
\end{tabular}

\section*{Complexity Notes}
- Time \(=O(m n)\), (value and alignment)
- Space \(=O(m n)\)
- Easy to get value in Time \(=O(m n)\) and Space \(=O(\min (m, n))\)
- Possible to get value and alignment in Time \(=O(m n)\) and Space \(=O(\min (m, n))\) but tricky.

\section*{Variations}

\section*{Local Alignment}
- Preceding gives global alignment, i.e. full length of both strings;
- Might well miss strong similarity of part of strings amidst dissimilar flanks
- Gap Penalties
- 10 adjacent spaces cost 10 x one space?
- Many others

\section*{Sequence Alignment}

Part II
Local alignments \& gaps

CSE527, Au '06, Ruzzo

\section*{Local Alignment:Motivations}
- "Interesting" (evolutionarily conserved, functionally related) segments may be a small part of the whole
- "Active site" of a protein
- Scattered genes or exons amidst "junk", e.g. retroviral insertions, large deletions
- Don't have whole sequence
- Global alignment might miss them if flanking junk outweighs similar regions

\section*{Local Alignment}

Optimal local alignment of strings S \& T:
Find substrings \(A\) of \(S\) and \(B\) of \(T\) having max value global alignment
\[
\begin{array}{ll}
S=\operatorname{abcxdex} & A=c x d e \\
T=x x x c d e & B=c-d e \quad \text { value }=5
\end{array}
\]

\section*{Local Alignment in \(\mathrm{O}(\mathrm{nm})\) via Dynamic Programming}
- Input: \(\mathrm{S}, \mathrm{T},|\mathrm{S}|=\mathrm{n},|\mathrm{T}|=\mathrm{m}\)
- Output: value of optimal local alignment

Better to solve a "harder" problem for all \(0 \leq i \leq n, 0 \leq j \leq m\) :
\(V(\mathrm{i}, \mathrm{j})=\) max value of opt (global)
alignment of a suffix of \(S[1], \ldots, S[i]\)
with a suffix of T[1], ..., T[j]
Report best \(\mathrm{i}, \mathrm{j}\)

\section*{The "Obvious" Local \\ Alignment Algorithm}
for all substrings \(A\) of \(S\) and \(B\) of \(T\) Align \(A \& B\) via dynamic programming Retain pair with max value

\section*{end;}

Output the retained pair
Time: \(O\left(n^{2}\right)\) choices for \(A, O\left(m^{2}\right)\) for \(B\), \(\mathrm{O}(\mathrm{nm})\) for DP, so \(\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~m}^{3}\right)\) total.
[Best possible? Lots of redundant work...]
CSE527, Au '06, Ruzzo

\section*{Base Cases}
- Assume \(\sigma(x,-) \leq 0, \sigma(-, x) \leq 0\)
- \(\mathrm{V}(\mathrm{i}, 0)\) : some suffix of first i chars of S ; all match spaces in T; best suffix is empty
\[
V(i, 0)=0
\]
- \(V(0, \mathrm{j})\) : similar
\[
V(0, j)=0
\]

CSE527, Au '06, Ruzzo

\section*{General Case Recurrences}

Opt suffix align \(\mathrm{S}[1], \ldots, \mathrm{S}[\mathrm{i}]\) vs \(\mathrm{T}[1], \ldots, \mathrm{T}[\mathrm{j}]\) :


Finding Local Alignments
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline i & j & 0 & 1
\(\times\) & \begin{tabular}{l}
2 \\
\(\times\) \\
\hline
\end{tabular} & 3
\(\times\) & 4
\(c\) & 5
d & 6
\(e\) & \multirow[b]{10}{*}{\(\leftarrow T\)




39} \\
\hline 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 1 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 2 & b & 0 & 0 & 0 & (0) & 0 & 0 & 0 & \\
\hline 3 & c & 0 & 0 & (0) & 0 & (2) & 1 & 0 & \\
\hline 4 & x & 0 & 2 & 2 & (2) & 1 & 1 & 0 & \\
\hline 5 & d & 0 & 1 & 1 & 1 & 1 & (3) & 2 & \\
\hline 6 & e & 0 & 0 & 0 & 0 & 0 & 2 & (5) & \\
\hline 7 & x & 0 & 2 & 2 & 2 & 1 & 1 & 4 & \\
\hline CSE527, Au' 06, Ruzzo & s & & & & & & & & \\
\hline
\end{tabular}

Scoring Local Alignments
\begin{tabular}{cc|r|r|r|r|r|r|r|} 
& \(j\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\(i\) & & & \(x\) & \(x\) & \(x\) & \(c\) & \(d\) & \(e\) \\
\hline 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & a & 0 & & & & & & \\
\hline 2 & b & 0 & & & & & & \\
\hline 3 & c & 0 & & & & & & \\
\hline 4 & x & 0 & & & & & & \\
\hline 5 & d & 0 & & & & & & \\
\hline 6 & e & 0 & & & & & & \\
\hline 7 & x & 0 & & & & & & \\
\hline
\end{tabular}

\section*{Notes}
- Time and Space \(=O(m n)\)
- Space \(O(\min (m, n))\) possible with time \(\mathrm{O}(\mathrm{mn})\), but finding alignment is trickier
- Local alignment: "Smith-Waterman"
- Global alignment: "Needleman-Wunsch"

\section*{Alignment With Gap Penalties}
- Gap: maximal run of spaces in \(S^{\prime}\) or \(\mathrm{T}^{\prime}\)

\section*{ab----c-d}
a-ddddcbd 2 gaps in S', 1 in T'
- Motivations, e.g.:
- mutation might insert/delete several or even many residues at once
- matching cDNA (no introns) to genomic DNA (exons and introns)

CSE527, Au '06, Ruzzo

\section*{Global Alignment with
Affine Gap Penalties \\ Global Alignment with
Affine Gap Penalties}
\(V(i, j)=\) value of opt alignment of \(S[1], \ldots, S[i]\) with \(T[1], \ldots, T[j]\)
\(G(i, j)=\ldots\), s.t. last pair matches \(S[i]\) \& \(T[j]\)
\(F(i, j)=\ldots\), s.t. last pair matches \(S[i]\) \& -
\(E(i, j)=\ldots\), s.t. last pair matches \(-\& T[j]\)

Time: \(\mathrm{O}(\mathrm{mn})\) [calculate all, \(\mathrm{O}(1)\) each]
s.t. last pair matches S[]\(\&\)

\section*{Gap Penalties}
- Score = f(gap length)
- Kinds, \& best known alignment time
- general

\(O\left(n^{3}\right)\)
- convex \(\qquad\) \(O\left(n^{2} \log n\right)\)
- affine \(\qquad\) \(\mathrm{O}(\mathrm{mn})\)

\section*{Affine Gap Algorithm}

Gap penalty \(=\mathrm{g}+\mathrm{s}^{*}\) (gap length), \(\mathrm{g}, \mathrm{s} \geq 0\)
\(V(\mathrm{i}, 0)=\mathrm{E}(\mathrm{i}, 0)=\mathrm{V}(0, \mathrm{i})=\mathrm{F}(0, \mathrm{i})=-\mathrm{g}-\mathrm{i}^{*} \mathrm{~S}\)
\(V(i, j)=\max (G(i, j), F(i, j), E(i, j))\)
\(G(i, j)=V(i-1, j-1)+\sigma(S[i], T[j])\)
\(F(\mathrm{i}, \mathrm{j})=\max (\mathrm{F}(\mathrm{i}-1, \mathrm{j})-\mathrm{s}, \mathrm{V}(\mathrm{i}-1, \mathrm{j})-\mathrm{g}-\mathrm{s})\)
\(E(i, j)=\max (\underbrace{E(i, j-1)-s}_{\text {old gap }}, \underbrace{V(i, j-1)-g-s)}_{\text {new gap }}\)
CSE527, Au '06, Ruzzo

\section*{Summary}

Functionally similar proteins/DNA often have recognizably similar sequences even after eons of divergent evolution
Ability to find/compare/experiment with "same" sequence in other organisms is a huge win
Surprisingly simple scoring model works well in practice: score each position separately \& add, possibly w/ fancier gap model like affine
Simple "dynamic programming" algorithms can find optimal alignments under these assumptions in poly time (product of sequence lengths)
This, and heuristic approximations to it like BLAST, are workhorse tools in molecular biology

\section*{DNA Replication: Basics}


\section*{Weekly Bio Interlude}

\section*{DNA Replication}

CSE527, Au 06, Ruzzo

\section*{Issues \& Complications, I}
- 1st \(\sim 10\) nt's added are called the primer
- In simple model, DNA pol has 2 jobs: prime \& extend
- Priming is error-prone
- So, specialized primase does the priming; pol specialized for fast, accurate extension

- Still doesn't solve the accuracy problem (hint: primase makes an RNA primer)

CSE527, Au '06, Ruzzo
\({ }^{48}\)

\section*{Issue 2: Rep Forks \& Helices}
"Replication Fork": DNA double helix is progressively unwound by a DNA helicase, and both resulting single strands are duplicated
DNA polymerase synthesizes new strand \(5^{\prime}->3^{\prime}\) (reading its template strand \(3^{\prime}\)-> 5')
That means on one (the "leading") strand, DNA pol is chasing/pushing the replication fork
But on the other "lagging" strand,
DNA pol is running away from it.

Issue 4: Coord Lead/Lag


\section*{Issue 3: Fragments}
- Lagging strand gets a series
of "Okazaki fragments" of
DNA (~200nt in eukaryotes)
following each primer foll (~200nt in eukaryotes)
- The RNA primers are later removed by a nuclease and DNA pol fills gaps (more accurate than primase)
- Fragments joined by ligase

CSE527, Au '06, Ruzzo

\section*{Issue 5: Twirls \& Tangles}
- Unwinding helix ( \(\sim 10\) nucleotides per turn) would cause stress. Topoisomerase I cuts DNA backbone on one strand allowing it to spin about the remaining bond, relieving stress
- Topoisomerase II can cut \& rejoin both strands, after allowing another double strand to pass through the gap, de-tangling it.

\section*{Issue 6: Proofreading}

Error rate of pol itself is \(\sim 10^{-4}\), but overall rate is \(10^{-9}\), due to proofreading \& repair, e.g.
- pol itself can back up \& cut off a mismatched base if one happens to be inserted
- priming the new strand is hard to do accurately, hence RNA primers, later removed \& replaced
- other enzymes scan helix for "bulges" caused by base mismatch, figure out which strand is original, cut away new (faulty) copy; DNA pol fills gap
- which strand is original? In bacteria, some A's are "methylated", but not immediately after replication

\section*{Replication Summary}
- Speed: 50 (eukaryotes) - 500 (prokaryotes) bp/sec
- Accuracy: 1 error per \(10^{9}\) bp
- Complex \& highly optimized
- Highly similar across all living cells

More info:
Alberts et al., Mol. Biol. of the Cell

CSE527, Au '06, Ruzzo```

