
CSE 527, Additional notes on MLE & EM
Based on earlier notes by C. Grant & M. Narasimhan

Introduction
Last lecture we began an examination of model based clustering. This  lecture will be the
technical background leading to the Expectation  Maximization (EM) algorithm.

Do gene expression data fit a Gaussian model? The central limit theorem implies that the
sum of a large  number  of independent  identically  distributed  random  variables  can be
well approximated  by a Normal  distribution.   While it is far from clear that the expres-
sion data is a sum of independent variables,  using the Normal distribution seems to work
in practice. Besides, having a weak model is better than having no model at all. 

Probability Basics
A random variable can be continuous  or discrete (or both).  A discrete  random random
variable corresponds to a probability distribution on a  discrete sample space, such as the
roll of a dice. A continuous random  variable corresponds to a probability distribution on
a continuous  sample  space such as .  Shown in the table below are two  examples of
probability  distributions,  with  the first  representing  a roll  of   an unbiased  die,  and the
second representing a Normal distribution.
 

Discrete Continuous
Sample Space 81, 2, ... 6< 

Distribution p1, p2, ... p6 ¥ 0,
⁄i=1
6 pi = 1

p1 = p2 =. .. = p6 = 1ÅÅÅ6

fHxL ¥ 0, Ÿ

fHxL dx = 1

fHxL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!2 p s2
 e-Hx-mL2ê2 s2

Discrete Probability Distribution
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Continuous Probability Distribution

-4 -2 2 4

0.1

0.2

0.3

0.4

Parameter Estimation
Many distributions are parametrized.  Typically,  we have data  x1, x2, ..., xn  that is sam-
pled from a parametric distribution f Hx » qL.  Often, the goal is to estimate the parameter q.
The mean m  and variance s2are often used as such parameters. Estimates of these quanti-
ties derived  from the sampled data are often called the sample statistics, while the  (true)
parameter based on the entire sample space is called the population  statistic. The follow-
ing table illustrates these two concepts. 
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Discrete Continuous

Population Mean m = ⁄i i pi m = Ÿ x fHxL dx

Population Variance s2 = ‚
i
Hi - mL2  pi s2 = Ÿ Hx - mL2 fHxL dx

Sample Mean xê = ⁄i=1
n xi ên xê = ⁄i=1

n xi ê n
Sample Variance sê2 = ⁄i=1

n Hxi - xêL2 ê n sê2 = ⁄i=1
n Hxi - xêL2 ê n

While the sample statistics can be used as estimates of these  parameters, this is often not
the  prefered  way  of  estimating  these   quantities.  For  example,  the  sample  variance
sêêê2 = ⁄i=1

n Hxi - xêêL2 ê n is a biased estimate of the true variance because it  underestimates
the  quantity  (an  unbiased  estimate  of  the  variance  is  given  by
sêêê2 = ⁄i=1

n Hxi - xêêL2 ê Hn - 1L ). Maximum Likelihood Estimation is one of many parameter
estimation techniques (note that the MLE is not guaranteed to be unbiased  either). 

Assuming  the  data  are  independent,  the  likelihood  of the data  x1, x2, ..., xn  given the
parameter q is

LHx1, x2, ..., xn » qL = ¤i=1
n f Hxi » qL

where f is the probability  density function of the presumed distribution (which of course
dcepends on q).  Note that the xi  are known constants,  not variables;  they are the values
we observed.  On the other hand, q is unknown. We treat the likelihood L as a function of
q and ask what value of q maximizes it.  The typical approach is to solve for

∂ÅÅÅÅÅÅÅ∂ q  LHx1, x2, ..., xn » qL = 0

Since  the  likelihood  function  is  always  positive  (and  we may  assume  it  to  be  strictly
positive), the log likelihood

ln LHx1, x2, ..., xn » qL = ln¤
i=1

n

 f Hxi » qL = „
i=1

ln f Hxi » qL

is well  defined,  and  by the  monotonicity  of the logarithm,  the log likelihood  is  maxi-
mized exactly when the likelihood is maximized. Hence we can solve for

∂ÅÅÅÅÅÅÅ∂ q  ln LHx1, x2, ..., xn » qL = 0

Note that  in general,  these  conditions  are statisfied  by maxima,  minima  and stationary
points of the log-likelihood  function.  (A "stationary point" is a temporary flat spot on a
curve that otherwise tends upward or downward.)  Further, if q is restricted to be in some
bounded  range,  then  maxima  might  occur  at the  boundary  which  does  not  satisfy  this
condition.  Therefore,  we need to check  the boundaries  separately.  Here  is an  example
which illustrates this procedure. 
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Example 1. Let x1, x2, ..., xn  be coin flips, and let q be the probability  of getting heads.
Suppose we observe n0  tails and n1  heads (n0 + n1 = nL. Then the likelihood function is
given by 

LHx1, x2, ..., xn » qL = H1 - qLn0  qn1

Hence the log - likelihood function is

ln LHx1, x2, ..., xn » qL = n0  ln H1 - qL + n1  ln q

To find a value of q that maximizes this function, we solve for
∂ÅÅÅÅÅÅÅ∂ q  ln LHx1, x2, ..., xn » qL = -n0ÅÅÅÅÅÅÅÅÅÅ1-q + n1ÅÅÅÅÅÅq = 0

This yields 
-n0ÅÅÅÅÅÅÅÅÅÅ1-q + n1ÅÅÅÅÅÅq = 0

n1H1 - qL = n0  q

n1 = Hn0 + n1L q
n1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn0 +n1 L = q

n1ÅÅÅÅÅÅn = q

(The sign of 2nd derivative can then be checked to guarantee that this is a maximum not
a  minimum.  Likewise,  you  can  easily  verify  that  the  maximum  is  not  attained  at  the
boundaries of the parameter space, i.e. at q=0 or q=1.)  This estimate for the parameter of
the distribution matches our intuition.

Example 2. Suppose xi ~ NHm, sL, s2 = 1 and m unknown. Then
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LHx1, x2, ..., xn » qL = ‰
i=1

n 1ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 e-Hxi -qL2 ê2

ln LHx1, x2, ..., xn » qL = S
i=1

n I- 1ÅÅÅÅ2  ln 2 p - Hxi -qL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 M
∂ÅÅÅÅÅÅÅ∂ q  ln LHx1, x2, ..., xn » qL = ⁄i=1

n Hxi - qL = ⁄i=1
n xi - n q = 0

So the value of q that maximizes the likelihood is

q = ⁄i=1
n xi ê n

Again  matching  our  intuition:  the  sample  mean  is  the  maximum  likelihood  estimator
(MLE) for the population 
mean.

Example 3. Suppose xi ~ NHm, sL, s2 and m unknown. Then

LHx1, x2, ..., xn » q1, q2L = ‰
i=1

n 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!2 pq2
 e-Hxi -q1 L2 ê2 q2

ln LHx1, x2, ..., xn » q1, q2L = S
i=1

n I- 1ÅÅÅÅ2  ln 2 p q2 - Hxi -q1 L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 q2
M

∂ÅÅÅÅÅÅÅÅÅ∂ q1
 ln LHx1, x2, ..., xn » q1, q2L = ‚

i=1

n Hxi -q1 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅq2
= 0ï⁄i=1

n xi ên = q1

∂ÅÅÅÅÅÅÅÅÅ∂ q2
 ln LHx1, x2, ..., xn » q1, q2L =

S
i=1

n I- 1ÅÅÅÅ2  2 pÅÅÅÅÅÅÅÅÅÅÅÅÅ2 p q2
+ Hxi -q1 L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 q2
2 M = S

i=1

n I- 1ÅÅÅÅÅÅÅÅÅÅ2 q2
+ Hxi -q1 L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 q2
2 M = 0 ï⁄i=1

n Hxi - q1L2 ê n = q2

The MLE for the population variance is the sample variance. This is a biased estimator. It
systematically  underestimates  the population variance, but is none the less the MLE. The
MLE doesn't promise an unbiased estimator but it is a reasonable approach.

Expectation Maximization

The MLE approach  works well  when we have  relatively  simple  parametrized  distribu-
tions. However, when we have more complicated situations, we may not be able to solve
for  the  ML estimate  because  the  complexity  of the likelihood  function  precludes  both
analytical and numerical  optimization.   The EM algorithm can be thought of as an algo-
rithm that provides a tractable approximation to the ML estimate. 

Consider the following example.  We have data corresponding  to heights  of individuals,
as shown in the figures  below.  Is this  distribution  likely  to be Normally  distributed  as
shown below?
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Or is there some hidden variable, like gender, so the distribution should be more like this:
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The clustering problem can is essentially a parameter estimation problem : Try to find if
there are hidden parameters that cause the data to fall into  two distributions f1HxL, f2HxL.
These  distributions  depend  on some  parameter  q:  f1Hx, qL, f2Hx, qL,  and  there  are  also
mixing  parameters  t1  and  t2,  t1 + t2 = 1,  which  describe  the  probability  of  sampling
from each  group.  Can we estimate   the parameters  for  the this  more complex  model?
Let's suppose that the two  groups are normal but with different, unknown, parameters.

The likelihood is now given by

LHx1, x2, ..., xn » t1, t2, m1, m2, s1, s2L = ¤i=1
n ⁄ j=1

2 t j  f j Hxi » q jL
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If we try to work with this in our existing framework it becomes messy and algebraically
intractable,  due to the product-of-sums  form, and remains so even if we take the log of
the likelihood.

This leads us to introduce  the Expectation  Maximization  (EM) algorithm as a heuristic
for finding the MLE. It is particularly useful for problems containing a hidden variable. It
uses a hill-climbing strategy to find a local maximum of the likelihood. 

Introduce new variables

zij = 9 1
0  

iff xi was sampled from distribution j
otherwise

These variables are introduced  for mathematical  convenience.  They let us avoid  a sum
over j in the expression for the likelihood. The full data table becomes

x1 z11 z12

x2 z21 z22

xn zn1 zn2

If the z were known estimating  t1 , t2  would be easy, and estimation  of the parameters
would become easy again.  If we knew the parameters estimation of the z would be easy.
The EM algorithm iterates over these alternatives.  It can  be proved that the likelihood
will be monotonically increasing, and so will  converge to a (local) maximum. [There is a
polynomial  time algorithm for  estimating  Gaussian mixtures under the assumption that
the components  are  "well-separated,"  but the method is not used much in  practice.   I
don't know whether the complexity of the general problem is  known; plausibly it's NP-
hard.  So, the EM algorithm is probably the method  of choice.]

Expectation  step

Assume fixed values for t j  and q j . Let A be the event that xi  is drawn from the distribu-
tion f1,  let B  be  the event  that  xi  is  drawn from f2,  and  let D  be the  event  that  xi  is
observed. We want PHA » DL, but it is easier to find PHD » AL. We use Bayes' rule:

PHA » DL = PHD»AL PHALÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPHDL

PHDL =
PHD » AL PHAL + PHD » BL PHBL = t1  PHD » AL + t2  PHD » BL = t1  f1Hxi » q1L + t2  f2Hxi » q2L
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PHA » DL is the expected value of zi1  given q1  and q2. This is the expectation step of the
EM algorithm.

To be concrete,  consider  a sample of points taken from a mixture of Gaussian distribu-
tions  with  unknown  parameters  and  unknown  mixing  coefficients.  The  EM  algorithm
will give estimates of the parameters that raise the likelihood of the data.

An easy heuristic to apply is 

If EHzi1L ¥ 1 ê 2 then set zi1 = 1
If EHzi1L < 1 ê 2 then set zi1 = 0

This gives rise to the so-called Classification EM algorithm (we classify each observation
as coming from exactly  one of the component   distributions).   The k-means  clustering
algorithm is an example.  In this  case, the maximization step is just like the simple Maxi-
mum  Likelihood   Estimation  examples  considered  above.   The  more  general  M-step
(below)   accounts  for  the  inherent  uncertainty  in  these  classifications,  appropriately
weighting the contributions of each observation to the parameter estimates  for each mix-
ture component.

Maximization step

The expression for the likelihood is 

LHx1, z11, z12, x2, z21, z22, ... » q, tL
The xi  are known. If the zij  were known finding the MLE of q, t would be easy, but we
don't.  Instead  we  maximize  the  expected  log  likelihood  of  the  visible  data
EHln LHx1, x2, ..., xn » q, tLL. The expectation is taken over the distribution of the hidden
variables  zij . Assuming s1

2 = s2
2 = s2, and t1=t2=t =H 1ÅÅÅÅ2 L:

LHx, z » q, tL = ‰
i=1

n
t 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!2 ps2

 e-1ê2 s2 H⁄ j=1
2 zij Hxi -m j L2 L

so

EHln LHx, z » q, tLL = EH⁄i=1
n ln 1ÅÅÅÅ2 - 1ÅÅÅÅ2  ln 2 ps2 - 1ÅÅÅÅÅÅÅÅÅÅÅ2 s2  ⁄ j=1

2  zijHxi - m j L2  L =

⁄i=1
n ln 1ÅÅÅÅ2 - 1ÅÅÅÅ2  ln 2 ps2 - 1ÅÅÅÅÅÅÅÅÅÅÅ2 s2  ⁄ j=1

2  EHzijL Hxi - m jL2  L
The last step above depends on the important fact that expectation is linear: if c and d are
constants  and X and Y are random variables,  then E(cX+dY)  = c E(X) + d E(Y).  We
calculated  EHzijL  in  the previous  step.  We can now solve for the m j  that  maximize  the
expectation  by the methods given earlier:  set derivatives  to zero, etc. With a little more
algebra you will see that the MLE for m j  is the weighted  average of the xi 's, where the
weights are the EHzijL's,which  makes sense intuitively: if a given point xi  has a high proba-
bility of having been sampled from distribution 1, then it will contribute  strongly to our
estimate of m1and weakly to our estimate of m2.
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The last step above depends on the important fact that expectation is linear: if c and d are
constants  and X and Y are random variables,  then E(cX+dY)  = c E(X) + d E(Y).  We
calculated  EHzijL  in  the previous  step.  We can now solve for the m j  that  maximize  the
expectation  by the methods given earlier:  set derivatives  to zero, etc. With a little more
algebra you will see that the MLE for m j  is the weighted  average of the xi 's, where the
weights are the EHzijL's,which  makes sense intuitively: if a given point xi  has a high proba-
bility of having been sampled from distribution 1, then it will contribute  strongly to our
estimate of m1and weakly to our estimate of m2.

It can be shown that  this procedure  increases  the likelihood  at every iteration,  hence is
guaranteed to converge to a local maximum.  Unfortunately, it is not guaranteed to be the
global maximum, but empirically it works well in many situations.
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