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CSE 527
Autumn 2006

Lectures 8-9 (& part of 10)
Motifs: Representation & Discovery
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DNA Binding Proteins

A variety of DNA binding proteins 
(“transcription factors”; a significant fraction, 
perhaps 5-10%, of all human proteins) 
modulate transcription of protein coding 
genes
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The Double Helix

Los Alamos Science
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In the 
groove

Different 
patterns of 
potential H 
bonds at 
edges of 
different 
base pairs, 
accessible 
esp. in 
major 
groove

Alberts, et al.
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Alberts, et al.

Helix-Turn-Helix DNA Binding Motif
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H-T-H Dimers

Bind 2 DNA patches, ~ 1 turn apart
Increases both specificity and affinity

Alberts, et al.
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Zinc 
Finger 
Motif

Alberts, et al. 8

Leucine Zipper Motif

Homo-/hetero-dimers 
and combinatorial 

control

Alberts, et al.
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Some Protein/DNA 
interactions well-understood 
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But the overall 
DNA binding 

“code” still defies 
prediction
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Bacterial Met Repressor

SAM (Met 
derivative)

Alberts, et al.

a beta-sheet DNA binding domain
Negative feedback loop: 

high Met level ⇒ repress Met synthesis genes
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DNA binding site 
summary

• complex “code”

• short patches (6-8 bp)

• often near each other (1 turn = 10 bp)

• often reverse-complements

• not perfect matches
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Sequence Motifs
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E. coli Promoters

• “TATA Box”  ~ 10bp upstream of 
transcription start

• How to define it?
• Consensus is TATAAT
• BUT all differ from it
• allow k mismatches?
• equally weighted?
• wildcards like R,Y?  ({A,G}, {C,T}, resp.)

TACGAT

TAAAAT

TATACT

GATAAT

TATGAT

TATGTT
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E. coli Promoters

• “TATA Box” - consensus TATAAT ~ 
10bp upstream of transcription start

• Not exact: of 168 studied (mid 80’s)
– nearly all had 2/3 of TAxyzT
– 80-90% had all 3
– 50% agreed in each of x,y,z
– no perfect match

• Other common features at -35, etc.
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TATA Box Frequencies

pos

base       1  2  3  4  5  6

A    2 95 26 59 51  1

C    9  2 14 13 20  3

G 10 1 16 15 13 0

T 79 3 44 13 17 96
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TATA Scores

pos

base       1 2 3 4 5 6

A -36 19 1 12 10 -46

C -15 -36 -8 -9 -3 -31  

G -13 -46 -6 -7 -9 -46(?)

T 17 -31 8 -9 -6 19
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Scanning for TATA

Stormo, Ann. Rev. Biophys.  Biophys Chem, 17, 1988, 241-263

A
C
G
T

A
C
G
T

A
C
G
T
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Score Distribution 
(Simulated)

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

-150 -130 -110 -90 -70 -50 -30 -10 10 30 50 70 90

20

Weight Matrices: 
Statistics

• Assume:

fb,i = frequency of base b in position i in TATA

fb  = frequency of base b in all sequences

• Log likelihood ratio, given S = B1B2...B6:
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Neyman-Pearson

• Given a sample x1, x2, ..., xn, from a distribution 

f(...|!) with parameter !, want to test 

hypothesis ! = "1 vs ! = "2.

• Might as well look at likelihood ratio:

    f(x1, x2, ..., xn|"1) 

    f(x1, x2, ..., xn|"2)

(or log likelihood difference)

>  #
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Score Distribution 
(Simulated)
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What’s best WMM?

• Given 20 sequences s1, s2, ..., sk of length 8, 

assumed to be generated at random 
according to a WMM defined by 8 x (4-1) 
parameters ", what’s the best "?

• E.g., what’s MLE for " given data s1, s2, ..., sk?

• Answer: count frequencies per position.
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Weight Matrices: 
Chemistry

• Experiments show ~80% correlation of log 
likelihood weight matrix scores to measured 
binding energy of RNA polymerase to 
variations on TATAAT consensus
[Stormo & Fields]
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ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG

Freq.  Col 1 Col 2 Col3

A .625 0 0

C 0 0 0

G .250 0 1

T .125 1 0

LLR  Col 1 Col 2 Col 3

A 1.32 -$ -$

C -$ -$ -$

G 0 -$ 2.00

T -1.00 2.00 -$

Another WMM example

log2
fxi,i

fxi

, fxi =
1
4

8 Sequences:

Log-Likelihood Ratio:
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• E. coli - DNA approximately 25%  A, C, G, T

• M. jannaschi - 68% A-T,  32% G-C

LLR from previous 
example, assuming

e.g., G in col 3 is 8 x more likely via WMM 
than background, so (log2) score = 3 (bits).

LLR  Col 1 Col 2 Col 3

A   .74 -$ -$

C -$ -$ -$

G  1.00 -$ 3.00

T -1.58 1.42 -$

Non-uniform Background

fA = fT = 3/8
fC = fG = 1/8
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• AKA Kullback-Liebler Distance/Divergence, 
AKA Information Content

• Given distributions P, Q

Notes: 

   

Relative Entropy

H(P ||Q) =
∑

x∈Ω

P (x) log
P (x)
Q(x)

Undefined if 0 = Q(x) < P (x)

Let P (x) log
P (x)
Q(x)

= 0 if P (x) = 0 [since lim
y→0

y log y = 0]

! 0

28

WMM: How “Informative”?
Mean score of site vs bkg?
• For any fixed length sequence x, let

P(x)  = Prob. of x according to WMM
Q(x) = Prob. of x according to background

•  Relative Entropy:

• H(P||Q) is expected log likelihood score of a  
sequence randomly chosen from WMM; 
-H(Q||P) is expected score of Background

H(P ||Q) =
∑

x∈Ω

P (x) log2
P (x)
Q(x)

H(P||Q)-H(Q||P)
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WMM Scores vs 
Relative Entropy
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-H(Q||P) = -6.8

H(P||Q) = 5.0

For WMM, you can show (based on the 
assumption of independence between 
columns), that :

where Pi and Qi are the WMM/background 

distributions for column i.

H(P ||Q) =
∑

i H(Pi||Qi)
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Freq.  Col 1 Col 2 Col3

A .625 0 0

C 0 0 0

G .250 0 1

T .125 1 0

LLR  Col 1 Col 2 Col 3
A  1.32 -$ -$
C -$ -$ -$
G 0 -$ 2.00
T -1.00 2.00 -$

RelEnt   .70 2.00 2.00 4.70

LLR  Col 1 Col 2 Col 3
A   .74 -$ -$
C -$ -$ -$
G  1.00 -$ 3.00
T -1.58 1.42 -$

RelEnt    .51 1.42 3.00 4.93

WMM Example, cont.

Uniform Non-uniform
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Pseudocounts

• Are the -!’s a problem?

• Certain that a given residue never occurs 
in a given position?  Then -! just right

• Else, it may be a small-sample artifact

• Typical fix: add a pseudocount to each observed 
count—small constant (e.g., .5, 1) 

• Sounds ad hoc; there is a Bayesian justification
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WMM Summary

• Weight Matrix Model (aka Position Specific Scoring Matrix, 
PSSM, “possum”, 0th order Markov models)

• Simple statistical model assuming independence 
between adjacent positions

• To build: count (+ pseudocount) letter frequency per 
position, log likelihood ratio to background

• To scan: add LLRs per position, compare to threshold
• Generalizations to higher order models (i.e., letter 

frequency per position, conditional on neighbor) also 
possible, with enough training data
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How-to Questions

• Given aligned motif instances, build model?

- Frequency counts (above, maybe with pseudocounts)

• Given a model, find (probable) instances

- Scanning, as above

• Given unaligned strings thought to contain a 
motif, find it?  (e.g., upstream regions for co-expressed 
genes from a microarray experiment)

- Hard... rest of lecture.
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Motif Discovery

Unfortunately, finding a site of max relative 
entropy in a set of unaligned sequences is 
NP-hard [Akutsu]

36

Motif Discovery: 
4 example approaches

• Brute Force

• Greedy search

• Expectation Maximization

• Gibbs sampler



37

Brute Force

Input:

• Sequences s1, s2, ..., sk (length ~n, say); motif length l

Algorithm:
• create singleton set with each length l 

subsequence of each s1, s2, ..., sk (~nk sets)

• for each set, add each possible length l 
subsequence not already present (~n2k(k-1) sets)

• repeat until all have k sequences (~nkk! sets)
• compute relative entropy of each; pick best
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Greedy Best-First Approach
[Hertz & Stormo]

Input:

• Sequence s1, s2, ..., sk; motif length I; “breadth” d

Algorithm:
• create singleton set with each length l 

subsequence of each s1, s2, ..., sk

• for each set, add each possible length l 
subsequence not already present

• compute relative entropy of each
• discard all but d best
• repeat until all have k sequences u
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Yi,j =
{

1 if motif in sequence i begins at position j
0 otherwise

Expectation Maximization 
[MEME, Bailey & Elkan, 1995]

Input (as above):

• Sequence s1, s2, ..., sk; motif length l; background 

model; again assume one instance per sequence 
(variants possible)

Algorithm: EM

• Visible data: the sequences

• Hidden data: where’s the motif

• Parameters ": The WMM
40

MEME Outline

Typical EM algorithm:

• Parameters "t at tth iteration,  used to estimate 
where the motif instances are (the hidden variables)

• Use those estimates to re-estimate the parameters " 

to maximize likelihood of observed data, giving "t+1

• Repeat

Key: given a few good matches to best motif, 
expect to pick out more
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Ŷi,j = E(Yi,j | si, θt)

= P (Yi,j = 1 | si, θt)

= P (si | Yi,j = 1, θt)P (Yi,j=1|θt)
P (si|θt)

= cP (si | Yi,j = 1, θt)

= c′
∏l

k=1 P (si,j+k−1 | θt)

where c′ is chosen so that
∑

j Ŷi,j = 1.

E = 0 · P (0) + 1 · P (1)

Baye
s

Expectation Step
(where are the motif instances?)

1 3 5 7 9 11 ...

Sequence i

Ŷi,j

}"=1
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Q(θ | θt) = EY ∼θt [log P (s, Y | θ)]

= EY ∼θt [log
∏k

i=1 P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1 log P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log P (si, Yi,j = 1 | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log(P (si | Yi,j = 1, θ)P (Yi,j = 1 | θ))]

=
∑k

i=1

∑|si|−l+1
j=1 EY ∼θt [Yi,j ] log P (si | Yi,j = 1, θ) + C

=
∑k

i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Maximization Step
(what is the motif?)

Find " maximizing expected value:

Exercise: Show this is 
maximized by “counting” 
letter frequencies over 
all possible motif 
instances, with counts 
weighted by      , again 
the “obvious” thing.

M-Step (cont.)

Q(θ | θt) =
∑k

i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Ŷi,j

s1 : ACGGATT. . .
. . .

sk : GC. . . TCGGAC

Ŷ1,1 ACGG
Ŷ1,2 CGGA
Ŷ1,3 GGAT

...
...

Ŷk,l−1 CGGA
Ŷk,l GGAC
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Initialization

1. Try every motif-length substring, and use as 
initial " a WMM with, say 80% of weight on 
that sequence, rest uniform

2. Run a few iterations of each

3. Run best few to convergence

(Having a supercomputer helps)



The Gibbs Sampler

Lawrence, et al.  “Detecting Subtle Sequence Signals:  A 
Gibbs Sampling Strategy for Multiple Sequence 

Alignment,” Science 1993

Another Motif 
Discovery Approach

• Geman & Geman, IEEE PAMI 1984

• Hastings, Biometrika, 1970

• Metropolis, Rosenbluth, Rosenbluth, Teller, & 
Teller, “Equations of State Calculations by 
Fast Computing Machines,” J. Chem. Phys. 
1953

• Josiah Williard Gibbs, 1839-1903,  American 
physicist, a pioneer of thermodynamics

Some History



How to Average

An old problem: 
• n random variables:
• Joint distribution (p.d.f.): 
• Some function:     
• Want Expected Value:

x1, x2, . . . , xk

P (x1, x2, . . . , xk)

E(f(x1, x2, . . . , xk))
f(x1, x2, . . . , xk)

How to Average

• Approach 1: direct integration 
(rarely solvable analytically, esp. in high dim)

• Approach 2: numerical integration 
(often difficult, e.g., unstable, esp. in high dim)

• Approach 3: Monte Carlo integration
  sample                                   and average:

E(f(x1, x2, . . . , xk)) =∫

x1

∫

x2

· · ·
∫

xk

f(x1, x2, . . . , xk) · P (x1, x2, . . . , xk)dx1dx2 . . . dxk

E(f(!x)) ≈ 1
n

∑n
i=1 f(!x(i))

!x(1), !x(2), . . . !x(n) ∼ P (!x)

Markov Chain Monte 
Carlo (MCMC)

• Independent sampling also often hard, but not 
required for expectation

• MCMC                                 w/ stationary dist = P

• Simplest & most common: Gibbs Sampling

• Algorithm
for t = 1 to #
   for i = 1 to k do : 

P (xi | x1, x2, . . . , xi−1, xi+1, . . . , xk)

xt+1,i ∼ P (xt+1,i | xt+1,1, xt+1,2, . . . , xt+1,i−1, xt,i+1, . . . , xt,k)

t+1    t

!Xt+1 ∼ P ( !Xt+1 | !Xt)

1 3 5 7 9 11 ...

Sequence i

Ŷi,j



• Input: again assume sequences s1, s2, ..., sk 

with one length w motif per sequence
• Motif model:  WMM
• Parameters:  Where are the motifs?

for 1 ! i ! k, have 1 ! x
i
 ! |s

i
|-w+1

• “Full conditional”: to calc

build WMM from motifs in all sequences 

except i, then calc prob that motif in ith seq 
occurs at j by usual “scanning” alg. 

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)
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Randomly initialize xi’s

for t = 1 to #
   for i = 1 to k 
      discard motif instance from si; 

      recalc WMM from rest
      for j = 1 ... |si|-w+1

         calculate prob that ith motif is at j:

         pick new xi according to that distribution 

Similar to 
MEME, but it 
would 
average over, 
rather than 
sample from

P (xi = j | x1, x2, . . . , xi−1, xi+1, . . . , xk)

Overall Gibbs Alg

• Burnin - how long must we run the chain to 
reach stationarity?

• Mixing - how long a post-burnin sample 
must we take to get a good sample of the 
stationary distribution?  (Recall that 
individual samples are not independent, and 
may not “move” freely through the sample 
space.  Also, many isolated modes.)

Issues

• “Phase Shift” - may settle on suboptimal 
solution that overlaps part of motif. 
Periodically try moving all motif instances a 
few spaces left or right.

• Algorithmic adjustment of pattern width:
Periodically add/remove flanking positions 
to maximize (roughly) average relative 
entropy per position

• Multiple patterns per string

Variants & Extensions
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• 13 tools

• Real ‘motifs’ (Transfac)

• 56 data sets (human, mouse, fly, yeast)

• ‘Real’, ‘generic’, ‘Markov’

• Expert users, top prediction only

Methodology



*     *     $    *     ^     ^     ^         *                    *
$ Greed
* Gibbs
^ EM
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Lessons

• Evaluation is hard (esp. when “truth” is unknown)

• Accuracy low

• partly reflects defects in evaluation methodology 
(e.g. <= 1 prediction per data set; results better 
in synth data)

• partly reflects difficult task, limited knowledge 
(e.g. yeast > others)

• No clear winner re methods or models
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Motif Discovery 
Summary

• Important problem: a key to understanding gene 
regulation

• Hard problem: short, degenerate signals amidst much 
noise

• Many variants have been tried, for representation, 
search, and discovery.  We looked at only a few:
• Weight matrix models for representation & search
• greedy, MEME and Gibbs for discovery

• Still much room for improvement.  Comparative 
genomics, i.e. cross-species comparison is very promising


