

H-T-H Dimers

Bind 2 DNA patches, \sim I turn apart Increases both specificity and affinity

Leucine Zipper Motif

Homo-/hetero-dimers and combinatorial control

Sequence Motifs

E. coli Promoters

- "TATA Box" - consensus TATAAT ~ IObp upstream of transcription start
- Not exact: of 168 studied (mid 80's)
- nearly all had $2 / 3$ of TAxyzT
$-80-90 \%$ had all 3
-50% agreed in each of x, y, z
- no perfect match
- Other common features at -35 , etc.

E. coli Promoters

- "TATA Box" ~ IObp upstream of transcription start
- How to define it?
- Consensus is TATAAT
- BUT all differ from it
- allow k mismatches?
- equally weighted?
- wildcards like R, Y ? (\{A,G\}, \{C,T\}, resp.)

TATA Box Frequencies

pos base	1	2	3	4	5	6
A	2	95	26	59	51	1
C	9	2	14	13	20	3
G	10	1	16	15	13	0
T	79	3	44	13	17	96

TATA Scores

pos base	1	2	3	4	5	6
A	-36	19	1	12	10	-46
C	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46
T	17	-31	8	-9	-6	19

Score Distribution

(Simulated)

Scanning for TATA

A	-38	19	(1)	12	(10)	(-48)
C	-15	-38	-8	-10	-3	-32
G	-13	-48	-6	-7	-10	-48
T	-17	-32	8	-9	-6	19

A	-38	(19)	1	(12)	(10)	-48	$=85$	
C	-15	-38	-8	-10	-3	-32		
$\stackrel{\mathrm{G}}{\mathrm{T}}$	-13	-48 -32	-8)	-7 -9	-10 -6	-18)		
	T	A	T	A	A	T	C	G

Neyman-Pearson

- Given a sample $x_{1}, x_{2}, \ldots, x_{n}$, from a distribution $f(\ldots, \mid \Theta)$ with parameter Θ, want to test hypothesis $\Theta=\theta_{1}$ vs $\Theta=\theta_{2}$.
- Might as well look at likelihood ratio:

$$
\frac{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}\right)}{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{2}\right)}>\tau
$$

(or log likelihood difference)

What's best WMM?

- Given 20 sequences $s_{1}, s_{2}, \ldots, s_{k}$ of length 8 , assumed to be generated at random according to a WMM defined by $8 \times(4-\mathrm{I})$ parameters θ, what's the best θ ?
- E.g., what's MLE for θ given data $s_{1}, s_{2}, \ldots, s_{k}$?
- Answer: count frequencies per position.

Score Distribution (Simulated)

Weight Matrices: Chemistry

- Experiments show $\sim 80 \%$ correlation of log likelihood weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus [Stormo \& Fields]

Another WMM example

8 Sequences:

ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG
Log-Likelihood Ratio:
$\log _{2} \frac{f_{x_{i}, i}}{f_{x_{i}}}, f_{x_{i}}=\frac{1}{4}$

Freq.	Col I	Col 2	Col3
A	.625	0	0
C	0	0	0
G	.250	0	I
T	. I 25	I	0

LLR	Col I	Col 2	Col 3
A	1.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$

Non-uniform Background

- E. coli - DNA approximately $25 \% \mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$
- M. jannaschi-68\% A-T, 32\% G-C

LLR from previous example, assuming

$$
\begin{aligned}
& f_{A}=f_{T}=3 / 8 \\
& f_{C}=f_{G}=1 / 8
\end{aligned}
$$

LLR	Col I	Col 2	Col 3
A	.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$

e.g., G in col 3 is $8 \times$ more likely via WMM than background, so $\left(\log _{2}\right)$ score $=3$ (bits).

Relative Entropy

- AKA Kullback-Liebler Distance/Divergence, AKA Information Content
- Given distributions P, Q

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \geq 0
$$

Notes:
Let $P(x) \log \frac{P(x)}{Q(x)}=0$ if $P(x)=0\left[\right.$ since $\lim _{y \rightarrow 0} y \log y=0$]
Undefined if $0=Q(x)<P(x)$

WMM: How "Informative"? Mean score of site vs bkg?

- For any fixed length sequence x, let
$P(x)=$ Prob. of x according to WMM
$Q(x)=$ Prob. of x according to background
- Relative Entropy:

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

- $H(P \| Q)$ is expected log likelihood score of a sequence randomly chosen from WMM; $-H(Q \| P)$ is expected score of Background

WMM Scores vs Relative Entropy

WMM Example, cont.

Freq.	Col I	Col 2	Col3
A	.625	0	0
C	0	0	0
G	.250	0	I
T	.125	I	0

Uniform

LLR	Col I	Col 2	Col 3
A	I.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$
RelEnt	.70	2.00	2.00

Non-uniform
LLR Col I Col 2 Col 3 A .74 $-\infty$ $-\infty$ C $-\infty$ $-\infty$ $-\infty$ G 1.00 $-\infty$ 3.00 T -1.58 1.42 $-\infty$$\|$RelEnt .5I .42

For WMM, you can show (based on the assumption of independence between columns), that :

$$
H(P \| Q)=\sum_{i} H\left(P_{i} \| Q_{i}\right)
$$

where P_{i} and Q_{i} are the WMM/background distributions for column i.

Pseudocounts

- Are the $-\infty$'s a problem?
- Certain that a given residue never occurs in a given position? Then $-\infty$ just right
- Else, it may be a small-sample artifact
- Typical fix: add a pseudocount to each observed count-small constant (e.g., .5, I)
- Sounds ad hoc; there is a Bayesian justification

Brute Force

Input:

- Sequences $s_{\mid}, s_{2}, \ldots, s_{k}$ (length $\sim n$, say); motif length / Algorithm:
- create singleton set with each length / subsequence of each $s_{1}, s_{2}, \ldots, s_{k}$ ($\sim n k$ sets)
- for each set, add each possible length I subsequence not already present ($\sim n^{2} k(k-I)$ sets $)$
- repeat until all have k sequences ($\sim n^{k} k$! sets)
- compute relative entropy of each; pick best

Expectation Maximization

[MEME, Bailey \& Elkan, 1995]
Input (as above):

- Sequence $s_{l}, s_{2}, \ldots, s_{k}$; motif length l; background model; again assume one instance per sequence (variants possible)
Algorithm: EM
- Visible data: the sequences
- Hidden data: where's the motif
$Y_{i, j}= \begin{cases}1 & \text { if motif in sequence } i \text { begins at position } j \\ 0 & \text { otherwise }\end{cases}$
- Parameters θ : The WMM

Greedy Best-First Approach

[Hertz \& Stormo]

Input:

- Sequence $s_{l}, s_{2}, \ldots, s_{k}$; motif length I;"breadth" d Algorithm:
- create singleton set with each length I subsequence of each $s_{l}, s_{2}, \ldots, s_{k}$
- for each set, add each possible length I subsequence not already present
- compute relative entropy of each
- discard all but d best \qquad
- repeat until all have k sequences

MEME Outline

Typical EM algorithm:

- Parameters θ^{t} at $t^{\text {th }}$ iteration, used to estimate where the motif instances are (the hidden variables)
- Use those estimates to re-estimate the parameters θ to maximize likelihood of observed data, giving θ^{t+1}
- Repeat

Key: given a few good matches to best motif, expect to pick out more

Expectation Step

(where are the motif instances?)

M-Step (cont.)

$Q\left(\theta \mid \theta^{t}\right)=\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} \widehat{Y}_{i, j} \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C$

Exercise: Show this is maximized by "counting" letter frequencies over all possible motif instances, with counts weighted by $\widehat{Y}_{i, j}$, again the "obvious" thing.
$s_{1}:$ ACGGATT.
s_{k} : GC...TCGGAC

$\widehat{Y}_{1,1}$	ACGG
$\widehat{Y}_{1,2}$	CGGA
$\widehat{Y}_{1,3}$	GGAT
\vdots	\vdots
$\widehat{Y}_{k, l-1}$	CGGA
$\widehat{Y}_{k, l}$	GGAC

Maximization Step

(what is the motif?)
Find θ maximizing expected value:
$Q\left(\theta \mid \theta^{t}\right)=E_{Y \sim \theta^{t}}[\log P(s, Y \mid \theta)]$
$=E_{Y \sim \theta^{t}}\left[\log \prod_{i=1}^{k} P\left(s_{i}, Y_{i} \mid \theta\right)\right]$
$=E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \log P\left(s_{i}, Y_{i} \mid \theta\right)\right]$
$=E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} Y_{i, j} \log P\left(s_{i}, Y_{i, j}=1 \mid \theta\right)\right]$
$=E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} Y_{i, j} \log \left(P\left(s_{i} \mid Y_{i, j}=1, \theta\right) P\left(Y_{i, j}=1 \mid \theta\right)\right)\right]$
$=\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} E_{Y \sim \theta^{t}}\left[Y_{i, j}\right] \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C$
$=\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} \widehat{Y}_{i, j} \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C$

Initialization

I. Try every motif-length substring, and use as initial θ a WMM with, say 80% of weight on that sequence, rest uniform
2. Run a few iterations of each
3. Run best few to convergence
(Having a supercomputer helps)

Another Motif Discovery Approach
 The Gibbs Sampler

Lawrence, et al. "Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Sequence Alignment," Science 1993

Sigma-37		QNK	SQKETGDILGISQMHVSR	LQRKAVKKLR	240
Spoilic	94	RFGLDLKKEK	TQREIAKELGISRSYVSR	IEKRALMKMF	111
NahR	22	VVFNQLLVDR	RVSITAENLGLTQPAVSN	ALKRLRTSLQ	39
Antennapedia	326	FHFNRYLTRR	RRIEIAHALCLTERQIKI	WFQNRRMKWK	343
NtrC (Brady.)	449	LTAALAATRG	NQIRAADLLGLNRNTLRK	KIRDLDIQVY	466
DicA	22	IRYRRKNLKH	TQRSLAKALKISHVSVSQ	WERGDSEPTG	39
MerD	5	MNAY	TVSRLALDAGVSVHIVRD	YLLRGLLRPV	
Fis	73	LDMVMQYTRG	NQTRAALMMGINRGTLRK	KLKKYGM	90
MAT 11	99	FRRKQSLNSK	EKEEVAKKCGITPLQVRV	WFINKRMRSK	116
Lambda cII	25	SALLNKIAML	GTEKTAEAVGVDKSQISR	WKRDWIPKFS	2
Crp (CAP)	169	THPDGMQIKI	TRQEIGQIVGCSRETVGR	ILKMLEDQNL	186
Lambda Cro	15	ITLKDYAMRF	GQTKTAKDLGVYQSAINK	AIHAGRKIFL	32
P22 Cro	12	YKKDVIDHFG	TQRAVAKALGISDAAVSQ	WKEVIPEKDA	9
Arac	196	ISDHLADSNF	DIASVAQHVCLSPSRLSH	LFRQQLGISV	13
Fnr	196	FSPREFRLTM	TRGDIGNYLGLTVETISR	LLGRFOKSGM	213
Htpr	252	ARWLDEDNKS	TLQELADRYGVSAERVRQ	LEKNAMKKLR	269
NtrC (k.a.)	444	LTTALRHTQG	HKQEAARLLGWGRNTLTR	KLK	461
CytR	11	MKAKKQETAA	TMKDVALKAKVSTATVS	ALMNPDKVSQ	28
Deor	23	LQELKRSDKL	HLKDAAALLGVSEMTIRR	DLNNHSAPVV	40
GalR	3		TIKDVARLAGVSVATVSR	VINNSPKASE	20
LacI	5	MKPV	TLYDVAEYAGVSYQTVSR	VVNQASHVSA	22
TetR	26	LLNEVGIEGL	TTRKLAQKLGVEQPTLYW	HVKNKRALLD	43
TrpR	67	IVEELLRGEM	SQRELKNELGAGIATITR	GSNSLKAAPV	34
NifA	495	LIAALEKAGW	VQAKAARLLGMTPRQVAY	RIQIMDITMP	512
Spoilg	205	RFGLVGEEEK	TQKDVADMMGISQSYISR	LEKRIIKRLR	222
Pin	160	QAGRLIAAGT	PRQKVAIIYDVGVSTLYK	TFPAGDK	177
PurR	- 3	MA	TIKDVAKRANVSTTTVSH	vinktrfvas	20
EbgR	3	MA	TLKDIAIEAGVSLATVSR	VLNDDPTLNV	20
LexA	27	DHISQTGMPP	TRAEIAQRLGFRSPNAAE	EHLKALARKG	44
P22 cI	25	SSILNRIAIR	GQRKVADALGINESQISR	WKGDFIPKMG	42

A25944	
A28627	
A32837	
A23450	
B26499	
B24328	(BVECDA)
C29010	
A32142	(DNECFS)
A90983	(JEBY1)
A03579	(QCBP2L)
A035553	(QRECC)
A03577	(RCBPL)
A25867	(RGBP22)
A03554	(RGECA)
A03552	(RGECF)
A00700	(RGECH)
A03564	(RGKBCP)
A24963	(RPECCT)
A24076	(RPECDO)
A03559	(RPECG)
A035588	(RPECL)
A03576	(RPECTN)
A03568	(RPECW)
S02513	
S07337	
S07958	
S08477	
S09205	
S11945	
B25867	(Z1BPC2)

Some History

- Geman \& Geman, IEEE PAMI I984
- Hastings, Biometrika, I970
- Metropolis, Rosenbluth, Rosenbluth,Teller, \& Teller,"Equations of State Calculations by Fast Computing Machines,"J. Chem. Phys. 1953
- Josiah Williard Gibbs, I839-I903, American physicist, a pioneer of thermodynamics

How to Average

An old problem:

- n random variables:

$$
x_{1}, x_{2}, \ldots, x_{k}
$$

- Joint distribution (p.d.f.): $P\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
- Some function: $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
- Want Expected Value: $E\left(f\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)$

Markov Chain Monte Carlo (MCMC)

- Independent sampling also often hard, but not required for expectation
- MCMC $\vec{X}_{t+1} \sim P\left(\vec{X}_{t+1} \mid \vec{X}_{t}\right) \mathrm{w} /$ stationary dist $=P$
- Simplest \& most common: Gibbs Sampling

$$
\dot{P}\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

- Algorithm

How to Average

$E\left(f\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)=$

$\int_{x_{1}} \int_{x_{2}} \cdots \int_{x_{k}} f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \cdot P\left(x_{1}, x_{2}, \ldots, x_{k}\right) d x_{1} d x_{2} \ldots d x_{k}$

- Approach I: direct integration (rarely solvable analytically, esp. in high dim)
- Approach 2: numerical integration (often difficult, e.g., unstable, esp. in high dim)
- Approach 3: Monte Carlo integration sample $\vec{x}^{(1)}, \vec{x}^{(2)}, \ldots \vec{x}^{(n)} \sim P(\vec{x})$ and average:

$$
E(f(\vec{x})) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(\vec{x}^{(i)}\right)
$$

- Input: again assume sequences $s_{1}, s_{2}, \ldots, s_{k}$ with one length w motif per sequence
- Motif model: WMM
- Parameters: Where are the motifs? for $1 \leq i \leq k$, have $1 \leq x_{i} \leq\left|s_{i}\right|-w+1$
- "Full conditional": to calc

$$
P\left(x_{i}=j \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

build WMM from motifs in all sequences except i, then calc prob that motif in $i^{\text {th }}$ seq occurs at j by usual "scanning" alg.

Overall Gibbs Alg

Randomly initialize x_{i} 's

for $t=1$ to ∞
for $i=1$ to k
discard motif instance from s_{i};
recalc WMM from rest
for $j=1 \ldots\left|s_{i}\right|-w+1$
Similar to
MEME, but it calculate prob that $i^{\text {th }}$ motif is at j :
would
average over, $\Longrightarrow P\left(x_{i}=j \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)$
$\underset{\substack{\text { rather than } \\ \text { sample from }}}{\text { pick new } x_{i} \text { according to that distribution }}$

Issues

- Burnin - how long must we run the chain to reach stationarity?
- Mixing - how long a post-burnin sample must we take to get a good sample of the stationary distribution? (Recall that individual samples are not independent, and may not "move" freely through the sample space. Also, many isolated modes.)

Variants \& Extensions

- "Phase Shift" - may settle on suboptimal solution that overlaps part of motif. Periodically try moving all motif instances a few spaces left or right.
- Algorithmic adjustment of pattern width: Periodically add/remove flanking positions to maximize (roughly) average relative entropy per position
- Multiple patterns per string

NATURE BIOTECHNOLOGY VOLUME 23 NUMBER 1 JANUARY 2005
Assessing computational tools for the discovery of transcription factor binding sites

Martin Tompa ${ }^{1,2}$, Nan Li 1, Timothy L Bailey ${ }^{3}$, George M Church ${ }^{4}$, Bart De Moor ${ }^{5}$, Eleazar Eskin ${ }^{6}$, Alexander V Favorov ${ }^{7,8}$, Martin C Frith ${ }^{9}$, Yutao Fu^{9}, W James Kent ${ }^{10}$, Vsevolod J Makeev ${ }^{7,8}$,
Andrei A Mironov ${ }^{7,11}$, William Stafford Noble ${ }^{1,2}$, Giulio Paves ${ }^{12}$, Graziano Pesole ${ }^{13}$, Mireille Régnier ${ }^{14}$, Nicolas Simonis ${ }^{15}$, Saurabh Sinha ${ }^{16}$, Gert Thijs s^{5}, Jacques van Helden ${ }^{15}$, Mathias Vandenbogaert ${ }^{14}$, Zhiping Weng ${ }^{9}$, Christopher Workman ${ }^{17}$, Chun Ye ${ }^{18} \&$ Zhou Zhu 4

Methodology

- 13 tools
- Real 'motifs' (Transfac)
- 56 data sets (human, mouse, fly, yeast)
- 'Real','generic','Markov’
- Expert users, top prediction only

Lessons

- Evaluation is hard (esp. when "truth" is unknown)
- Accuracy low
- partly reflects defects in evaluation methodology (e.g. <= I prediction per data set; results better in synth data)
- partly reflects difficult task, limited knowledge (e.g. yeast > others)
- No clear winner re methods or models

Motif Discovery Summary

- Important problem: a key to understanding gene regulation
- Hard problem: short, degenerate signals amidst much noise
- Many variants have been tried, for representation, search, and discovery. We looked at only a few:
- Weight matrix models for representation \& search
- greedy, MEME and Gibbs for discovery
- Still much room for improvement. Comparative genomics, i.e. cross-species comparison is very promising

