CSE 527

Autumn 2006

Lectures 8-9 (& part of 10) Motifs: Representation & Discovery

Т

DNA Binding Proteins

A variety of DNA binding proteins ("transcription factors"; a significant fraction, perhaps 5-10%, of all human proteins) modulate transcription of protein coding genes

2

The Double Helix

Neyman-Pearson

Given a sample x₁, x₂, ..., x_n, from a distribution f(...|Θ) with parameter Θ, want to test hypothesis Θ = θ₁ vs Θ = θ₂.

τ

• Might as well look at likelihood ratio:

$$\frac{f(x_{1}, x_{2}, ..., x_{n} | \theta_{1})}{f(x_{1}, x_{2}, ..., x_{n} | \theta_{2})} >$$

(or log likelihood difference)

What's best WMM?

- Given 20 sequences $s_1, s_2, ..., s_k$ of length 8, assumed to be generated at random according to a WMM defined by 8 x (4-1) parameters θ , what's the best θ ?
- + E.g., what's MLE for θ given data $s_1, s_2, ..., s_k ?$
- Answer: count frequencies per position.

Score Distribution (Simulated)

Weight Matrices: Chemistry

 Experiments show ~80% correlation of log likelihood weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus [Stormo & Fields]

23

Non-uniform Background

- E. coli DNA approximately 25% A, C, G, T
- M. jannaschi 68% A-T, 32% G-C

LLR from previous example, assuming

f_A	$= f_T = 3$	/8
	$= f_G = 1$	

ous	LLR	Col I	Col 2	Col 3
ning	Α	.74	-8	- 8
_	С	-∞	-8	-8
8	G	1.00	-8	3.00
8	Т	-1.58	1.42	-∞

e.g., G in col 3 is 8 x more likely via WMM than background, so (log_2) score = 3 (bits).

Relative Entropy

- AKA Kullback-Liebler Distance/Divergence, AKA Information Content
- Given distributions P, Q

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \ge \mathbf{C}$$

Notes:

Let
$$P(x) \log \frac{P(x)}{Q(x)} = 0$$
 if $P(x) = 0$ [since $\lim_{y \to 0} y \log y = 0$]
Undefined if $0 = Q(x) < P(x)$

27

WMM: How "Informative"? Mean score of site vs bkg?

- For any fixed length sequence x, let
 P(x) = Prob. of x according to WMM
 Q(x) = Prob. of x according to background
- Relative Entropy:

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log_2 \frac{P(x)}{Q(x)}$$

H(P||Q) is expected log likelihood score of a sequence randomly chosen from WMM;
 -H(Q||P) is expected score of Background

28

WMM Summary

- Weight Matrix Model (aka Position Specific Scoring Matrix, PSSM, "possum", 0th order Markov models)
- Simple statistical model assuming independence between adjacent positions
- To build: count (+ pseudocount) letter frequency per position, log likelihood ratio to background
- To scan: add LLRs per position, compare to threshold
- Generalizations to higher order models (i.e., letter frequency per position, conditional on neighbor) also possible, with enough training data

How-to Questions

- Given aligned motif instances, build model?
 - Frequency counts (above, maybe with pseudocounts)
- Given a model, find (probable) instances
 - Scanning, as above
- Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions for co-expressed genes from a microarray experiment)
 - Hard... rest of lecture.

Motif Discovery

Unfortunately, finding a site of max relative entropy in a set of unaligned sequences is NP-hard [Akutsu]

Motif Discovery: 4 example approaches

- Brute Force
- Greedy search
- Expectation Maximization
- Gibbs sampler

35

33

Brute Force

Input:

Sequences s₁, s₂, ..., s_k (length ~n, say); motif length l
 Algorithm:

- create singleton set with each length *l* subsequence of each s₁, s₂, ..., s_k (~nk sets)
- for each set, add each possible length l subsequence not already present (~n²k(k-1) sets)
- repeat until all have k sequences (~n^kk! sets)
- compute relative entropy of each; pick best

Expectation Maximization [MEME, Bailey & Elkan, 1995]

Input (as above):

 Sequence s₁, s₂, ..., s_k; motif length *l*; background model; again assume one instance per sequence (variants possible)

Algorithm: EM

- Visible data: the sequences
- Hidden data: where's the motif

 $Y_{i,j} = \begin{cases} 1 & \text{if motif in sequence } i \text{ begins at position } j \\ 0 & \text{otherwise} \end{cases}$

• Parameters θ : The WMM

39

astronomically sloooow

37

problem:

Greedy Best-First Approach [Hertz & Stormo]

Input:

• Sequence $s_1, s_2, ..., s_k$; motif length *l*; "breadth" *d*

Algorithm:

- create singleton set with each length *l* subsequence of each s₁, s₂, ..., s_k
- for each set, add each possible length *l* subsequence not already present
- compute relative entropy of each
- discard all but d best 🔶
- repeat until all have k sequences

MEME Outline

Typical EM algorithm:

- Parameters θ^t at t^{th} iteration, used to estimate where the motif instances are (the hidden variables)
- Use those estimates to re-estimate the parameters θ to maximize likelihood of observed data, giving θ^{t+1}
- Repeat

Key: given a few good matches to best motif, expect to pick out more

problems

"greedy"

usual

Another Motif Discovery Approach The Gibbs Sampler

Lawrence, et al. "Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Sequence Alignment," Science 1993

Sigma-37	223	IIDLTYIQNK	SQKETGDILGISQMHVSR	LORKAVKKLR	240	A25944		
SpoIIIC	94	RFGLDLKKEK	TOREIAKELGISRSYVSR	IEKRALMKMF	111	A28627		
NahR	22	VVFNQLLVDR	RVSITAENLGLTQPAVSN	ALKRLRTSLQ	39	A32837		
Antennapedia	326	FHFNRYLTRR	RRIEIAHALCLTERQIKI	WFQNRRMKWK	343	A23450		
NtrC (Brady.)	449	LTAALAATRG	NQIRAADLLGLNRNTLRK	KIRDLDIQVY	466	B26499		
DicA	22	IRYRRKNLKH	TQRSLAKALKISHVSVSQ	WERGDSEPTG	39	B24328	(BVECDA)	
MerD	5	MNAY	TVSRLALDAGVSVHIVRD	YLLRGLLRPV	22	C29010		
Fis	73	LDMVMQYTRG	NQTRAALMMGINRGTLRK	KLKKYGMN	90	A32142	(DNECFS)	
MAT al	99	FRRKQSLNSK	EKEEVAKKCGITPLQVRV	WFINKRMRSK	116	A90983	(JEBY1)	
Lambda cII	25	SALLNKIAML	GTEKTAEAVGVDKSQISR	WKRDWIPKFS	42	A03579	(QCBP2L)	
Crp (CAP)	169	THPDGMQIKI	TRQEIGQIVGCSRETVGR	ILKMLEDQNL	186	A03553	(QRECC)	
Lambda Cro	15	ITLKDYAMRF	GQTKTAKDLGVYQSAINK	AIHAGRKIFL	32	A03577	(RCBPL)	
P22 Cro	12	YKKDVIDHFG	TQRAVAKALGISDAAVSQ	WKÉVIPEKDA	29	A25867	(RGBP22)	
AraC	196	ISDHLADSNF	DIASVAQHVCLSPSRLSH	LFRQQLGISV	213	A03554	(RGECA)	
Fnr	196	FSPREFRLTM	TRGDIGNYLGLTVETISR	LLGRFQKSGM	213	A03552	(RGECF)	
HtpR	252	ARWLDEDNKS	TLQELADRYGVSAERVRQ	LEKNAMKKLR	269	A00700	(RGECH)	
NtrC (K.a.)			HKQEAARLLGWGRNTLTR		461	A03564	(RGKBCP)	
CytR	11	MKAKKQETAA	TMKDVALKAKVSTATVSR	ALMNPDKVSQ	28	A24963	(RPECCT)	
DeoR		LQELKRSDKL	HLKDAAALLGVSEMTIRR	DLNNHSAPVV	40	A24076	(RPECDO)	
GalR	3		TIKDVARLAGVSVATVSR		20	A03559	(RPECG)	
LacI	5	MKPV	TLYDVAEYAGVSYQTVSR	VVNQASHVSA	22	A03558		
TetR			TTRKLAQKLGVEQPTLYW		43		(RPECTN)	
TrpR	67	IVEELLRGEM	SQRELKNELGAGIATITR	GSNSLKAAPV	84	A03568	(RPECW)	
NifA			VQAKAARLLGMTPRQVAY		512	S02513		
SpoIIG			TQKDVADMMGISQSYISR		222	S07337		
, Pin		QAGRLIAAGT	PRQKVAIIYDVGVSTLYK	TFPAGDK	177	S07958		
PurR	- 3	MA	TIKDVAKRANVSTTTVSH	VINKTRFVAE	20	S08477		
EbgR	3		TLKDIAIEAGVSLATVSR		20	S09205		
LexA	27		TRAEIAQRLGFRSPNAAE		44	S11945		
P22 cI	25	SSILNRIAIR	GQRKVADALGINESQISR		42	B25867	(Z1BPC2)	
			****	***				

в								Pogit	ion i	n site								
D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Arg	94	222	265	137	9	9	137	137	9	9	9	52	222	94	94	9	265	606
Lys	9	133	442	380	9	71	380	194	9	133	9	9	71	94	94	9	265	256
Glu	53	9	96	401	9	9	140	140	9	9	9	53	140	140	9	9	9	53
Asp	67	é	9	473	é	è	299	125	é	67	é	67	67	9	9	ģ	9	67
Gln	°,	600	224	9	é	è	224	223	é	°9	é	9	278	63	278	é	é	170
His	240	9		ģ	9	9	125	125	9	9	9	9	125	125	125	9	9	240
Asn	168	é	é	é	é	é	168	89	9	89	ģ	248	9	168	89	9	89	89
Ser	117	وَ	117	117	وَ	وَ	- 00	وَ	é	é	é	819	63	387	63	é	819	و و
Gly	151	é	56	9	é	151	é	وَ	وَ	1141	é	151	9	56	9	é	56	é
Ala	.9	وَ	112	43	181	901	43	181	215	9	43	9	43	181	112	. 43	78	وَ
Thr	915	130	130	9	251	9	9	- 9	9	é	9	311	130	70	855		130	وَ
Pro	76	9	9	9	9	ģ	é	ģ	é	é	وَ	9	210	210	9	é	1.90 9	é
Cvs	. 9	9	9	9	9	ģ	وَ	9	295	581	295	é	9	9	é	é	. 9	é
Val	58	107	9	9	500	9	9	9	156	9	598	9	205	58	9	746	9	58
Leu	9	121	9	9	149		93	149	458	9	149	9	37	37		177	é	9
Ile	9	166	114	61	323	9	114	166	9	9	427	9.	61	9	61	427	9	61
Met	9	104	9	9	9	9	9	198	198	9	104	9	9	198	9	9	9	- 9
Tyr	9	9	136	9	· 9	9	9	262	262	9	9	136	136	9	262	9	262	136
Phe	9	9	9	9	9	9	9	9	9	9	108	9	9	9	9	9	9	9
Trp	9	9	9	9	9	9	9	9	9	9	366	9	9	9	9	9	9	366

Some History

- Geman & Geman, IEEE PAMI 1984
- Hastings, Biometrika, 1970
- Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, "Equations of State Calculations by Fast Computing Machines," J. Chem. Phys. 1953
- Josiah Williard Gibbs, 1839-1903, American physicist, a pioneer of thermodynamics

- Input: again assume sequences s₁, s₂, ..., s_k with one length w motif per sequence
- Motif model: WMM
- Parameters: Where are the motifs? for $1 \le i \le k$, have $1 \le x_i \le |s_i| - w + 1$
- "Full conditional": to calc $P(x_i = j \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$

build WMM from motifs in all sequences except *i*, then calc prob that motif in i^{th} seq occurs at *j* by usual "scanning" alg.

Overall Gibbs Alg

Randomly initialize x_i 's for t = | to ∞ for i = 1 to k discard motif instance from s;; recalc WMM from rest for $i = 1 ... |s_i| - w + 1$ MEME, but it calculate prob that i^{th} motif is at *j*: $P(x_i = j \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$ average over, rather than pick new x_i according to that distribution sample from

54

Similar to

would

Issues

- Burnin how long must we run the chain to reach stationarity?
- Mixing how long a post-burnin sample must we take to get a good sample of the stationary distribution? (Recall that individual samples are not independent, and may not "move" freely through the sample space. Also, many isolated modes.)

Variants & Extensions

- "Phase Shift" may settle on suboptimal solution that overlaps part of motif. Periodically try moving all motif instances a few spaces left or right.
- Algorithmic adjustment of pattern width: Periodically add/remove flanking positions to maximize (roughly) average relative entropy per position
- Multiple patterns per string

Lessons

- Evaluation is hard (esp. when "truth" is unknown)
- Accuracy low
 - partly reflects defects in evaluation methodology (e.g. <= 1 prediction per data set; results better in synth data)
 - partly reflects difficult task, limited knowledge (e.g. yeast > others)
- No clear winner re methods or models

63

Motif Discovery Summary

- Important problem: a key to understanding gene regulation
- Hard problem: short, degenerate signals amidst much noise
- *Many* variants have been tried, for representation, search, and discovery. We looked at only a few:
 - Weight matrix models for representation & search
 - greedy, MEME and Gibbs for discovery
- Still much room for improvement. *Comparative* genomics, i.e. cross-species comparison is very promising