CSE 527
 Lecture 10

Parsimony and
Phylogenetic Footprinting

Phylogenies (aka Evolutionary Trees)

"Nothing in biology makes sense, except in the light of evolution"
-- Dobzhansky

- A Complex Question:

Given data (sequences, anatomy, ...) infer the phylogeny

- A Simpler Question:

Given data and a phylogeny, evaluate "how much change" is needed to fit data to tree

Parsimony

General idea ~ Occam's Razor: Given data where change is rare, prefer an explanation that requires few events

Human A T G A T ...
Chimp ATGAT...
Gorilla A T G A G ...
Rat A T G C G ... Mouse ATGCT...

Parsimony

General idea ~ Occam's Razor: Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor: Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor: Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor: Given data where change is rare, prefer an explanation that requires few events

Parsimony

General idea ~ Occam's Razor: Given data where change is rare, prefer an explanation that requires few events

Counting Events Parsimoniously

- Lesson of example - no unique reconstruction
- But there is a unique minimum number, of course
- How to find it?
- Early solutions 1965-75

Sankoff \& Rousseau,‘75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Sankoff-Rousseau Recurrence

$P_{u}(s)=$ best parsimony score of subtree rooted at

 node u, assuming u is labeled by character sFor Leaf u :

$$
P_{u}(s)= \begin{cases}0 & \text { if } u \text { is a leaf labeled } s \\ \infty & \text { if } u \text { is a leaf not labeled } s\end{cases}
$$

For Internal node u:

$$
P_{u}(s)=\sum_{v \in \operatorname{child}(u)} \min _{t \in\{A, C, G, T\}} \operatorname{cost}(s, t)+P_{v}(t)
$$

Time: O (alphabet ${ }^{2} \times$ tree size)

Sankoff \& Rousseau, ‘75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

$$
P_{u}(s)=\sum_{v \in \operatorname{child}(u)} \min _{t \in\{A, C, G, T\}} \operatorname{cost}(s, t)+P_{v}(t)
$$

Sankoff \& Rousseau, ‘75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Sankoff \& Rousseau, '75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Parsimony Generalities

- Parsimony is not necessarily the best way to evaluate a phylogeny (maximum likelihood generally preferred)
- But it is a natural approach, \& fast.
- Finding the best tree: a much harder problem
- Much is known about these problems; Inferring Phylogenies by Joe Felsenstein is a great resource.

Phylogenetic Footprinting

See link to Tompa's slides on course web page http://www.cs.washington.edu/homes/tompa/papers/ortho.ppt

