CSE 527
Computational Biology Autumn 2006

Lectures 13-14
Gene Prediction

Some References

(more on schedule page)

An extensive online bib

http://www.nslij-genetics.org/gene/
A good intro survey
JM Claverie (1997) "Computational methods for the identification of genes in vertebrate genomic
sequences" Human Molecular Genetics,
6(10)(review issue): 1735-1744.
A gene finding bake-off
M Burset, \underline{R} Guigo (1996), "Evaluation of gene structure prediction programs", Genomics, 34(3): 353-367.

Protein Coding Nuclear DNA

Focus of this lecture
Goal: Automated annotation of new sequence data
State of the Art:
predictions $\sim 60 \%$ similar to real proteins $\sim 80 \%$ if database similarity used lab verification still needed, still expensive

Biological Basics

Central Dogma:
DNA $\xrightarrow{\text { transcription }}$ RNA $\xrightarrow{\text { translation }}$ Protein
Codons: 3 bases code one amino acid
Start codon
Stop codons
3', 5' Untranslated Regions (UTR's)

Translation: mRNA \rightarrow Protein

Codons \& The Genetic Code

Arg : Arginine
Asn : Asparagine
Asp:Aspartic acid
Cys : Cysteine
GIn : Glutamine
Glu : Glutamic acid
Gly : Glycine
His : Histidine
Ile
Il
lle : Isoleucine
Leu : Leucine
Leu: Leucine
Lys $:$ Lysine
Met $:$ Methionine
Phe: Phenylalanine
Pro : Proline
Ser : Serine
Thr : Threonine
Trp :Tryptophane
Trp :Tryptophane
Tyr : Tyrosin

Ribosomes

Idea \#1: Find Long ORF's

Reading frame: which of the 3 possible sequences of triples does the ribosome read?
Open Reading Frame: No stop codons In random DNA
average ORF $=64 / 3=21$ triplets 300bp ORF once per 36kbp per strand
But average protein ~ 1000 bp

Recognizing Codon Bias

Assume

Codon usage i.i.d.; abc with freq. $\mathrm{f}(\mathrm{abc})$ $\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \mathrm{a}_{4} \ldots \mathrm{a}_{3 \mathrm{n}+2}$ is coding, unknown frame Calculate
$p_{1}=f\left(a_{1} a_{2} a_{3}\right) f\left(a_{4} a_{5} a_{6}\right) \ldots f\left(a_{3 n-2} a_{3 n-1} a_{3 n}\right)$
$p_{2}=f\left(a_{2} a_{3} a_{4}\right) f\left(a_{5} a_{6} a_{7}\right) \ldots f\left(a_{3 n-1} a_{3 n} a_{3 n+1}\right)$
$p_{3}=f\left(a_{3} a_{4} a_{5}\right) f\left(a_{6} a_{7} a_{8}\right) \ldots f\left(a_{3 n} a_{3 n+1} a_{3 n+2}\right)$
$P_{i}=p_{i} /\left(p_{1}+p_{1}+p_{3}\right)$
More generally: k-th order Markov model $k=5$ or 6 is typical

Idea \#2: Codon Frequency

In random DNA
Leucine : Alanine : Tryptophan $=6: 4: 1$
But in real protein, ratios ~ 6.9 : $6.5: 1$
So, coding DNA is not random
Even more: synonym usage is biased (in a species dependant way)
examples known with 90% AT $3^{\text {rd }}$ base
Why? E.g. histone, enhancer, splice interactions

Promoters, etc.
In prokaryotes, most DNA coding
E.g. $\sim 70 \%$ in H. influenzae

Long ORFs + codon stats do well
But obviously won't be perfect
short genes
5' \& 3' UTR's
Can improve by modeling promoters \& other signals
e.g. via WMM or higher-order Markov models

Eukaryotes

As in prokaryotes (but maybe more variable) promoters
start/stop transcription
start/stop translation

Mechanical Devices of the Spliceosome: Motors, Clocks, Springs, and Things

Jonathan P. Staley and Christine Guthrie

CELL Volume 92, Issue 3, 6 February 1998, Pages 315-326

Figure 2. Spliceosome Assembly, Rearrangement and Disassembly Requires ATP, Numerous DExD/H box Proteins, and Prp24. The snRNPs are depicted as circles. The pathway for S. cerevisiae is shown.

18

Figure 3. Splicing Requires Numerous Rearrangements

Figure 3. Splicing Requires Numerous Rearrangements

exchange of U1 for U6

${ }^{\text {A }}{ }_{\text {Prp28 }}$ Prp16 Prp22 HRH1 U2AF ${ }^{65}$ Prp24 Snu114

B

 HCV Rep

Figure 5. Sequence Characteristics of the Spliceosome's Mechanical Gadgets(A) Examples of domain structure. DEAD and DEAH, helicase-like domains; C-domain, conserved in the DEAH proteins; S1, a ribosomal motif implicated in RNA binding; RS, rich in serine/arginine dipeptides; RRM, RNA recognition motif; EF-2, elongation factor 2. All factors are from S
cerevisiae except for the mammalian factors U2AF65 and HRH1, the human ortholog of Prp22. (B) Sequence motifs of the DExD/H box domains. DEAD, residues identical betwee Prp5, Prp28, and U5ミ100 kDa (Table 1). DEAH, amino acid residues identical between Prp2, Prp16, Prp22, Prp43, hPRP16, and HRH1 (Table 1). x, any amino acid. The specific

Figure 6. A Paradigm for Unwindase Specificity and Timing? The DExD/H box protein UAP56 (orange) binds U2AF ${ }^{65}$ (pink) through its linker region (L). U2 binds the branch point. Y's indicate the polypyrimidine stretch; RS, RRM as in Figure 5A. Sequences are from mammals.

Eukaryotes

As in prokaryotes (but maybe more variable) promoters
start/stop transcription
start/stop translation
New Features:
polyA site/tail
introns, exons, splicing
branch point signal
alternative splicing

$$
5^{\prime}
$$

$$
{ }^{5} \text { exon, intron exon, introi }
$$

AG/GT yyy..AG/G AG/GT
donor acceptor donor

Big Genes

Many genes are over 100 kb long,
Max known: dystrophin gene (DMD), 2.4 Mb.
The variation in the size distribution of coding sequences and exons is less extreme, although there are remarkable outliers.

The titin gene has the longest currently known coding sequence at $80,780 \mathrm{bp}$; it also has the largest number of exons (178) and longest single exon (17,106 bp).

RNApol rate: $2.5 \mathrm{~kb} / \mathrm{min}=16$ hours to transcribe DMD

Characteristics of human genes

(Nature, 2/2001, Table 21)

	Median	Mean	Sample (size)
Internal exon	122 bp	145 bp	RefSeq alignments to draft genome sequence, with confirmed intron boundaries (43,317 exons)
Exon number	7	8.8	RefSeq alignments to finished seq (3,501 genes)
Introns	1,023 bp	3,365 bp	RefSeq alignments to finished seq (27,238 introns)
3' UTR	400 bp	770 bp	Confirmed by mRNA or EST on chromo 22 (689)
5' UTR	240 bp	300 bp	Confirmed by mRNA or EST on chromo 22 (463)
Coding seq	1,100 bp	1340bp	Selected RefSeq entries (1,804$)^{*}$
(CDS)	367 aa	447 aa	
Genomic span	14 kb	27 kb	Selected RefSeq entries (1,804)*

* 1,804 selected RefSeq entries were those with full-
* 1,804 selected RefSeq entries were inose with full--
length unambiguous alignment to finished sequence

Computational Gene Finding?
How do we algorithmically account for all this complexity...

Program	m	คC	C	M0	riS	n	
	Accuracy						
	$\begin{aligned} & \text { per nuc. } \\ & \text { Sn Sp } \end{aligned}$		per exon				
			Sn	Sp	Avg.	ME	WE
GENSCAN	0.93	0.93	0.78	0.81	0.80	0.09	0.05
FGENEH	0.77	0.88	0.61	0.64	0.64	0.15	0.12
GeneID	0.63	0.81	0.44	0.46	0.45	0.28	0.24
Genie	0.76	0.77	0.55	0.48	0.51	0.17	0.33
GenLang	0.72	0.79	0.51	0.52	0.52	0.21	0.22
GeneParser2	0.66	0.79	0.35	0.40	0.37	0.34	0.17
GRAIL2	0.72	0.87	0.36	0.43	0.40	0.25	0.11
SORFIND	0.71	0.85	0.42	0.47	0.45	0.24	0.14
Xpound	0.61	0.87	0.15	0.18	0.17	0.33	0.13
GeneID \ddagger	0.91	0.91	0.73	0.70	0.71	0.07	0.13
GeneParser3	0.86	0.91	0.56	0.58	0.57	0.14	0.09

Generalized Hidden Markov Models

- п: Initial state distribution
- $\mathrm{a}_{i j}$: Transition probabilities

- One submodel per state
- Outputs are strings gen'ed by submodel
- Given length L
- Pick start state $\mathrm{q}_{1}(\sim \pi)$
- While $\sum d_{i}<L$
- Pick d_{i}
- Pick string s_{i} of length $d_{i}=\left|s_{i}\right| \sim$ submodel for q_{i}
- Pick next state $\mathrm{q}_{\mathrm{i}+1}\left(\sim \mathrm{a}_{\mathrm{ij}}\right)$
- Output $\mathrm{s}_{1} \mathrm{~s}_{2} \ldots$

Decoding

- A "parse" ϕ of $s=s_{1} s_{2} \ldots s_{L}$ is a pair $d=d_{1} d_{2} \ldots d_{k} q=q_{1} q_{2} \ldots q_{k}$ with $\sum d_{i}=L$
- Now use something like the forward/ backward algorithms to calculate probabilities like " P (seq up to position i generated ending in state q_{k})", which involves summing over possible predecessor states $\mathrm{q}_{\mathrm{k}-1}$ and possible d_{k}

$$
\operatorname{Pr}(\phi \mid s)=\frac{P_{p}(\phi a s)}{P_{p}(s)}
$$

Submodels

5' UTR

L~geometric(769 bp), s~MM(5)
3' UTR
$\mathrm{L} \sim$ geometric (457 bp), $\mathrm{s} \sim \mathrm{MM}(5)$
Intergenic
$\mathrm{L} \sim$ geometric(GC-dependent), s ~MM(5) Introns
$\mathrm{L} \sim$ geometric(GC-dependent), $\mathrm{s} \sim \mathrm{MM}(5)$

Effect of G+C Content

Group

$\mathrm{C} \neq \mathrm{G} \%$ range
Number of genes
Est. proportion single-exon genes
Codelen: single-exon genes (bp)
Codelen: multi-exon genes (bp)
Introns per multi-exon gene
Mean intron length (bp)
Est. mean transcript length (bp)
sochore
DNA amount in genome (Mb)
Estimated gene number
Est. mean intergenic length
Initial probabilities:
Intergenic (N)
Intron (I+, I-)
5^{\prime} Untranslated region ($\mathrm{F}+, \mathrm{F}$ -
3^{\prime} Untranslated region (T+, T-)

I	II	III	IV
<43	$43-51$	$51-57$	>57
65	115	99	101
0.16	0.19	0.23	0.16
1130	1251	1304	1137
902	908	1118	1165
5.1	4.9	5.5	5.6
2069	1086	801	518
10866	6504	5781	4833
L1+L2	$\mathrm{H} 1+\mathrm{H} 2$	H 3	H 3
2074	1054	102	68
22100	24700	9100	9100
83000	36000	5400	2600
0.892	0.867	0.54	0.418
0.095	0.103	0.338	0.388
0.008	0.018	0.077	0.122
0.005	0.011	0.045	0.072
			40

Submodel: Exons

Inhomogenious 3-periodic 5th order Markov models

Separate models for low GC ($<43 \%$), high GC

Track "phase" of exons, i.e. reading frame.

Signal Models I: WMM's

Polyadenylation
6 bp, consensus AATAAA
Translation Start
12 bp, starting 6 bp before start codon
Translation stop
A stop codon, then 3 bp WMM

Signal Models II: more WMM's

Promoter
70\% TATA
15 bp TATA WMM
s ~ null, L ~Unif(14-20)
8 bp cap signal WMM
30\% TATA-less
40 bp null

Signal Models III: W/WAM's

Acceptor Splice Site (3' end of intron)
$[-20 . .+3]$ relative to splice site modeled by " 1 st order weight array model"
Branch point \& polypyrimidine tract
Hard. Even weak consensus like YYRAY found in [-40..-21] in only 30% of training
"Windowed WAM": 2nd order WAM, but averaged over 5 preceding positions
"captures weak but detectable tendency toward YYY triplets and certain branch point related triplets like TGA, TAA, ..."

What's in the Primary Sequence?

Signal Models IV: Maximum Dependence Decomposition

Donor splice sites (5' end of intron) show dependencies between non-adjacent positions, e.g. poor match at one end compensated by strong match at other end, 6 bp away
Model is basically a decision tree Uses χ^{2} test to quantitate dependence

χ^{2} test for independence									
i)	Con	j: -3	-2	-1	+3	+4	+5	+6	Sum
-3	c/a	---	61.8*	14.9	5.8	20.2*	11.2	18.0*	131.8*
-2	A	115.6*	---	40.5*	20.3*	57.5*	59.7*	42.9*	336.5*
-1	G	15.4	82.8*	---	13.0	61.5*	41.4*	96.6*	310.8*
+3	a / g	8.6	17.5*	13.1	--	19.3*	1.8	0.1	60.5*
+4	A	21.8*	56.0*	62.1*	64.1*	---	56.8*	0.2	260.9*
+5	G	11.6	60.1*	41.9*	93.6*	146.6*	---	33.6*	387.3*
+6		22.2*	40.7*	103.8*	26.5*	17.8*	32.6*	--	243.6*

* means chi-squared p-value < . 001

$$
\chi^{2}=\sum_{i} \frac{\left(\text { observed }_{i}-\operatorname{expcted}_{i}\right)^{2}}{\operatorname{expected}_{i}}
$$

"expected" means expected
assuming independence

Summary of Burge \& Karlin

Coding DNA \& control signals nonrandom
Weight matrices, WAMs, etc. for controls Codon frequency, etc. for coding
GHMM nice for overall architecture
Careful attention to small details pays

Problems with all methods

Pseudo genes
Short ORFs
Sequencing errors
Non-coding RNA genes \& spliced UTR's
Overlapping genes
Alternative splicing/polyadenylation
Hard to find novel stuff -- not in training
Species-specific weirdness -- spliced leaders, polycistronic transcripts, RNA editing...

Problems with BK training set

1 gene per sequence
Annotation errors
Single exon genes over-represented?
Highly expressed genes over-represented?
Moderate sized genes over-represented? (none > 30 kb) ...
Similar problems with other training sets, too

Other important ideas

Database search - does gene you're predicting look anything like a known protein?
Comparative genomics - what does this region look like in related organisms?

