RNA Search and Motif Discovery

Lectures 17-19 CSE 527 Autumn 2006

The Human Parts List, circa 2001

3 billion nucleotides, containing: •25,000 protein-coding genes (only ~1% of the DNA) Messenger RNAs made from each attta ctggacccca •Plus a double-handful of other RNA genes

Noncoding RNAs

Dramatic discoveries in last 5 years 100s of new families Many roles: Regulation,

transport, stability, catalysis, ...

1% of DNA codes for protein, but 30% of it is copied into RNA, i.e. ncRNA >> mRNA

Outline

Task I: RNA 2^{ary} Structure Prediction (last time) Task 2: RNA Motif Models Covariance Models Training & "Mutual Information" Task 3: Search Rigorous & heuristic filtering Task 4: Motif discovery

Task 2: Motif Description

How to model an RNA "Motif"?

Conceptually, start with a profile HMM:

- from a multiple alignment, estimate nucleotide/ insert/delete preferences for each position
- given a new seq, estimate likelihood that it could be generated by the model, & align it to the model

How to model an RNA "Motif"?

Add "column pairs" and pair emission probabilities for base-paired regions

RNA Motif Models

"Covariance Models" (Eddy & Durbin 1994) aka profile stochastic context-free grammars aka hidden Markov models on steroids Model position-specific nucleotide preferences and base-pair preferences

Pro: accurate

Con: model building hard, search sloooow

"RNA sequence analysis using covariance models"

Eddy & Durbin Nucleic Acids Research, 1994 vol 22 #11, 2079-2088 (see also, Ch 10 of Durbin et al.)

What

A probabilistic model for RNA families The "Covariance Model" ~ A Stochastic Context-Free Grammar A generalization of a profile HMM Algorithms for Training From aligned or unaligned sequences Automates "comparative analysis" Complements Nusinov/Zucker RNA folding Algorithms for searching

Main Results

Very accurate search for tRNA (Precursor to tRNAscanSE - current favorite) Given sufficient data, model construction comparable to, but not quite as good as, human experts

Some quantitative info on importance of pseudoknots and other tertiary features

Probabilistic Model Search

As with HMMs, given a sequence, you calculate likelihood ratio that the model could generate the sequence, vs a background model

You set a score threshold

Anything above threshold \rightarrow a "hit"

Scoring:

"Forward" / "Inside" algorithm - sum over all paths Viterbi approximation - find single best path (Bonus: alignment & structure prediction)

Example: searching for tRNAs

Alignment Quality

Trusted:

DF6280	GCGGAUUUAGCUCAGUU	GGG	AGAGCGCCAGA	CUGAAG	AUCUGGAG	GUCCUGUGUUCGAUCCACAGAAUUCGCACCA
DF6280G	GCGGAUUUAGCUCAGUU	GGG	AGAGCGCCAGA	CUGAAGAAAUACUUCGGU	CAAGUUAUCUGGAG	GUCCUGUGUUCGAUCCACAGAAUUCGCA
DD6280	UCCGUGAUAGUUUAAU	GGU	CAGAAUGGGCGC	UUGUCG	CGUGCCAG	A UCGGGGUUCAAUUCCCCGUCGCGGAGCCA
DX1661	CGCGGGGGUGGAGCAGCC	UGGU	AGCUCGUCGGG	CUCAUA	ACCCGAAG	GUCGUCGGUUCAAAUCCGGCCCCCGCAACCA
DS6280	GGCAACUUGGCCGAGU	GGUU	JAAGGCGAAAGA	UUAGAA	AUCUUUU	GGGCUUUGCCCG CGCAGGUUCGAGUCCUGCAGUUGUCGCCA

U100:

DF6280	GCGGAUUUAGCUCAG UUGGGAGAGCGCCAGACU	GA	AG	AUCUGGA	GGUCCUGUGUUCGAUCCACAGAAUUCGCAcca
DF6280G	GCGGAUUUAGCUCAG UUGGGAGAGCGCCAGACUgaagaaauac	uUCggu	uCAaguu	AUCUGGA	GGUCCUGUGUUCGAUCCACAGAAUUCGCA
DD6280	UCCGUGAUAGUUUAA UGGUCAGAAUGGGCGCUU	GU	CG	CGUGCCA	GAU CGGGGUUCAAUUCCCCGUCGCGGAGcca
DX1661	CGCGGGGUGGAGCAGcCUGGUAGCUCGUCGGGCU	CA	UA	ACCCGAA	GGUCGUCGGUUCAAAUCCGGCCCCCGCAAcca
DS6280	GGCAACUUGGCCGAG UGGUUAAGGCGAAAGAUU	AG	AA	AUCUUUUgggcuuugccc	G CGCAGGUUCGAGUCCUGCAGUUGUCGcca

ClustalV:

DF6280	GCGGAUUUAGCUCAGUUGGGA	GAGCGCCAGACUGAAGA	UCUG	GAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA
DF6280G	GCGGAUUUAGCUCAGUUGGGA	GAGCGCCAGACUGAAGAAAU	ACUUCGGUCAAGUUAUCUG	GAGGUCCUGUGUUCGAUCCACAGAAUUCGCA
DD6280	UCCGUGAUAGUUUAAU	G GUCAGAAUGG GCG	CUUG UCGCGUGCC	AGAUCGG GGUUCAAUUCCCCGUCGCGGAGCCA
DX1661	CGCGGGGUGGAGCAGC	CUGGUAGCUCGUCGGG	CUCA UAACCCGA	AGGUCGUCGGUUCAAAUCCGGCCCCCGCAACCA
DS6280	GGCAACUUGGCCGAGUGGUUA	AGGCGAAAGAUU AGAAAU	CUUUUGGGC UUUGCCCG	CGCAGGUUCGAGUCCUGCAGUUGUCGCCA

Comparison to TRNASCAN

Fichant & Burks - best heuristic then 97.5% true positive 0.37 false positives per MB CM A1415 (trained on trusted alignment) > 99.98% true positives <0.2 false positives per MB Current method-of-choice is "tRNAscanSE", a CMbased scan with heuristic pre-filtering (including TRNASCAN?) for performance reasons.

Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.

- M_j: Match states (20 emission probabilities)
- I: Insert states (Background emission probabilities)
- Dj: Delete states (silent no emission)

CM Structure

A: Sequence + structureB: the CM "guide tree"C: probabilities of letters/ pairs & of indels

Think of each branch being an HMM emitting both sides of a helix (but 3' side emitted in reverse order)

Overall CM Architecture

One box ("node") per node of guide tree

BEG/MATL/INS/DEL just like an HMM

MATP & BIF are the key additions: MATP emits *pairs* of symbols, modeling basepairs; BIF allows multiple helices

CM Viterbi Alignment (the "inside" algorithm)

$$x_i = i^{th}$$
 letter of input

$$x_{ij}$$
 = substring *i*,..., *j* of input

$$T_{yz} = P(\text{transition } y \rightarrow z)$$

$$E_{x_i,x_j}^y = P(\text{emission of } x_i, x_j \text{ from state } y)$$

 $S_{ij}^{y} = \max_{\pi} \log P(x_{ij} \text{ gen'd starting in state } y \text{ via path } \pi)$

CM Viterbi Alignment (the "inside" algorithm)

$$S_{ij}^{y} = \max_{\pi} \log P(x_{ij} \text{ generated starting in state } y \text{ via path } \pi)$$

$$\max_{z} [S_{i+1,j-1}^{z} + \log T_{yz} + \log E_{x_{i},x_{j}}^{y}] \quad \text{match pair}$$

$$\max_{z} [S_{i+1,j}^{z} + \log T_{yz} + \log E_{x_{i}}^{y}] \quad \text{match/insert left}$$

$$\max_{z} [S_{i,j-1}^{z} + \log T_{yz} + \log E_{x_{j}}^{y}] \quad \text{match/insert right}$$

$$\max_{z} [S_{i,j}^{z} + \log T_{yz}] \quad \text{delete}$$

$$\max_{i < k \le j} [S_{i,k}^{y_{left}} + S_{k+1,j}^{y_{right}}] \quad \text{bifurcation}$$

$$\lim_{z < mathch{max}} O(qn^{3}), q \text{ states, seq len n}$$

Model Training

Mutual Information

$$M_{ij} = \sum_{xi,xj} f_{xi,xj} \log_2 \frac{f_{xi,xj}}{f_{xi}f_{xj}}; \quad 0 \le M_{ij} \le 2$$

Max when *no* seq conservation but perfect pairing MI = expected score gain from using a pair state Finding optimal MI, (i.e. opt pairing of cols) is hard(?) Finding optimal MI *without pseudoknots* can be done by dynamic programming

M.I. Example (Artificial)

Cols 1 & 9, 2 & 8: perfect conservation & *might* be base-paired, but unclear whether they are. M.I. = 0

Cols 3 & 7: *No* conservation, but always W-C pairs, so seems likely they do base-pair. M.I. = 2 bits.

Cols 7->6: unconserved, but each letter in 7 has only 2 possible mates in 6. M.I. = 1 bit.

MI-Based Structure-Learning

Find best (max total MI) subset of column pairs among i...j, subject to absence of pseudo-knots

$$S_{i,j} = \max \begin{cases} S_{i,j-1} \\ \max_{i \le k < j-4} S_{i,k-1} + M_{k,j} + S_{k+1,j-1} \end{cases}$$

"Just like Nussinov/Zucker folding"

BUT, need enough data---enough sequences at right phylogenetic distance

				disallowed allowed				$\left(\sum_{i=1}^{n}\max_{j}M_{i}\right)$
	Avo	Min	Max	ClustalV	1º info	2° info]	
Dataset	id	id	id	accuracy	(bits)	(bits)		
TEST	.402	.144	1.00	64%	43.7	30.0-32.3		
SIM100	.396	.131	.986	54%	39.7	30.5-32.7		
SIM65	.362	.111	.685	37%	31.8	28.6-30.7		

Table 1: Statistics of the training and test sets of 100 tRNA sequences each. The average identity in an alignment is the average pairwise identity of all aligned symbol pairs, with gap/symbol alignments counted as mismatches. Primary sequence information content is calculated according to [48]. Calculating pairwise mutual information content is an NP-complete problem of finding an optimum partition of columns into pairs. A lower bound is calculated by using the model construction procedure to find an optimal partition subject to a non-pseudoknotting restriction. An upper bound is calculated as sum of the single best pairwise covariation for each position, divided by two; this includes all pairwise tertiary interactions but overcounts because it does not guarantee a disjoint set of pairs. For the meaning of multiple alignment accuracy of ClustalV, see the text.

Pseudoknots

			score	alignment
Model	training set	iterations	(bits)	accuracy
A1415	all sequences (aligned)	3	58.7	95%
A100	SIM100 (aligned)	3	57.3	94%
A65	SIM65 (aligned)	3	46.7	93%
U100	$SIM100 \ (degapped)$	23	56.7	90%
U65	SIM65 (degapped)	29	47.2	91%

Table 2: Training and multiple alignment results from models trained from the trusted alignments (A models) and models trained from no prior knowledge of tRNA (U models).

tRNAScanSE

uses 3 older heuristic tRNA finders as prefilter uses CM built as described for final scoring Actually 3(?) different CMs eukaryotic nuclear prokaryotic organellar used in all genome annotation projects

Rfam – an RNA family DB Griffiths-Jones, et al., NAR '03, '05

Biggest scientific computing user in Europe -1000 cpu cluster for a month per release Rapidly growing: Rel 1.0, 1/03: 25 families, 55k instances Rel 7.0, 3/05: 503 families, >300k instances

Rfam

Input (hand-curated): MSA "seed alignment" SS_cons Score Thresh T Window Len W Output: CM scan results & "full

alignment"

IRE (partial seed alignment):

5500

Hom.sap.	GUUCC	UGC	UUCAA	CAGUGU	UUGGAU	J <mark>GGAAC</mark>
Hom.sap.	UUUCU	UC.	UUCAA	CAGUGU	UUGGA	J <mark>GGAAC</mark>
Hom.sap.	UUUCC	UGU	UUCAA	CAGUGC	UUGGA	. <mark>GGAAC</mark>
Hom.sap.	UUUAU	ю	AGUGA	CAGAGU	UCACU	. <mark>AUAAA</mark>
Hom.sap.	UCUCU	UGC	UUCAA	CAGUGU	UUGGA	J <mark>GGAAC</mark>
Hom.sap.	AUUAU	с	GGGAA	CAGUGU	UUCCC	. <mark>AUAAU</mark>
Hom.sap.	UCUUG	С	UUCAA	CAGUGU	UUGGA	C <mark>GGAAG</mark>
Hom.sap.	UGUAU	ю	GGAGA	CAGUGA	UCUCC	. <mark>AUAUG</mark>
Hom.sap.	AUUAU	ю	GGAAG	CAGUGC	CUUCC	. <mark>AUAAU</mark>
Cav.por.	UCUCC	UGC	UUCAA	CAGUGC	UUGGA	C <mark>GGAGC</mark>
Mus.mus.	UAUAU	ю	GGAGA	CAGUGA	UCUCC	. <mark>AUAUG</mark>
Mus.mus.	ບບບດດ	UGC	UUCAA	CAGUGC	UUGAA	C <mark>GGAAC</mark>
Mus.mus.	GUACU	UGC	UUCAA	CAGUGU	UUGAA	C <mark>GGAAC</mark>
Rat.nor.	UAUAU	ю	GGAGA	CAGUGA	CCUCC	. <mark>AUAUG</mark>
Rat.nor.	UAUCU	UGC	UUCAA	CAGUGU	UUGGA	C <mark>GGAAC</mark>
SS_cons	<<<<		<<<<	<	>>>>>	. <mark>>>>></mark>

Figure 2, Taxonomic distribution of Rfam family members in the three kingdoms of life.

Rfam – key issues

Overly narrow families Variant structures/unstructured RNAs Spliced RNAs **RNA** pseudogenes Human ALU is SRP-related, with 1.1×10⁶ copies Mouse B2 repeat (350k copies) tRNA related Speed & sensitivity Motif discovery

Task 3: Faster Search

Faster Genome Annotation of Non-coding RNAs Without Loss of Accuracy Zasha Weinberg

& W.L. Ruzzo

Recomb '04, ISMB '04, Bioinfo '06

Ravenna: Genome Scale RNA Search

Typically 100x speedup over raw CM, w/ no loss in accuracy: drop structure from CM to create a (faster) HMM use that to pre-filter sequence; discard parts where, provably, CM will score < threshold; actually run CM on the rest (the promising parts) assignment of HMM transition/emission scores is key (large convex optimization problem)

Weinberg & Ruzzo, *Bioinformatics*, 2004, 2006

Covariance Model

Key difference of CM vs HMM: Pair states emit paired symbols, corresponding to base-paired nucleotides; 16 emission probabilities here.
CM's are good, but slow

Simplified CM (for pedagogical purposes only)

CM to HMM

25 emisions per state

5 emissions per state, 2x states

Need: log Viterbi scores $CM \le HMM$

Viterbi/Forward Scoring

Path π defines transitions/emissions Score(π) = product of "probabilities" on π NB: ok if "probs" aren't, e.g. $\Sigma \neq 1$ (e.g. in CM, emissions are odds ratios vs Oth-order background)

For any nucleotide sequence x: Viterbi-score(x) = max{ score(π) | π emits x } Forward-score(x) = Σ { score(π) | π emits x }

NB: HMM not a prob. model

Rigorous Filtering

$$P_{AA} \le L_A + R_A$$

$$P_{AC} \le L_A + R_C$$

$$P_{AG} \le L_A + R_G$$

$$P_{AU} \le L_A + R_U$$

$$P_{A-} \le L_A + R_-$$

Any scores satisfying the linear inequalities give rigorous filtering

Proof:

CM Viterbi path score

- ≤ "corresponding" HMM path score
- ≤ Viterbi HMM path score

(even if it does not correspond to any CM path)

Some scores filter better

$$P_{UA} = I \leq L_{U} + R_{A}$$
$$P_{UG} = 4 \leq L_{U} + R_{G}$$

Option I:
 $L_U = R_A = R_G = 2$ Assuming ACGU $\approx 25\%$ Option 2:
 $L_U = 0, R_A = I, R_G = 4$ Opt 2:
 $L_U + (R_A + R_G)/2 = 2.5$

Optimizing filtering

For any nucleotide sequence x:

Viterbi-score(x) = max{ score(π) | π emits x }

Forward-score(x) = Σ { score(π) | π emits x }

Expected Forward Score

 $E(L_i, R_i) = \sum_{\text{all sequences } x} Forward-score(x)*Pr(x)$ NB: E is a function of L_i, R_i only

Optimization:

Under Oth-order background model

Minimize $E(L_i, R_i)$ subject to score Lin.Ineq.s

This is heuristic ("forward $\downarrow \Rightarrow$ Viterbi $\downarrow \Rightarrow$ filter \downarrow ")

But still rigorous because "subject to score Lin.Ineq.s"

Calculating $E(L_i, R_i)$

 $E(L_i, R_i) = \sum_x Forward-score(x)*Pr(x)$

Forward-like: for every state, calculate expected score for all paths ending there; easily calculated from expected scores of predecessors & transition/emission probabilities/scores

Minimizing $E(L_i, R_i)$

Calculate $E(L_i, R_i)$ symbolically, in terms of emission scores, so we can do partial derivatives for numerical convex optimization algorithm

Forward:

 $f_k(i) = P(x_1 \dots x_i, \ \pi_i = k)$ $f_l(i+1) = e_l(x_{i+1}) \sum_k f_k(i) a_{k,l}$

Viterbi: $v_l(i+1) = e_l(x_{i+1}) \cdot \max_k(v_k(i) a_{k,l})$

$$\frac{\partial E(L_1, L_2, \ldots)}{\partial L_i}$$

Estimated Filtering Efficiency (139 Rfam 4.0 families)

Filtering fraction	# families (compact)	# families (expanded)		
< 10-4	105	110		
10-4 - 10-2	8	17	speedu	
.0110		3		
.1025	2	2		
.2599	6	4		
.99 - 1.0	7	3		

Results: New ncRNA's?

Name	# found BLAST + CM	# found rigorous filter + CM	# new
Pyrococcus snoRNA	57	180	123
Iron response element	201	322	121
Histone 3' element	1004	1106	102
Purine riboswitch	69	123	54
Retron msr		59	48
Hammerhead I	167	193	26
Hammerhead III	251	264	13
U4 snRNA	283	290	7
S-box	128	131	3
U6 snRNA	1462	1464	2
U5 snRNA	199	200	I
U7 snRNA	312	313	I

Results: With additional work

	# with BLAST+CM	# with rigorous filter series + CM	# new			
Rfam tRNA	58609	63767	5158			
Group II intron	5708	6039	331			
tRNAscan-SE (human)	608	729	121			
tmRNA	226	247	21			
Lysine riboswitch	60	71	11			
And more						

"Additional work"

Profile HMM filters use *no* 2^{ary} structure info

They work well because, tho structure can be critical to function, there is (usually) enough primary sequence conservation to exclude most of DB

But not on all families (and may get worse?)

Can we exploit some structure (quickly)?

Idea I: "sub-CM"

Idea 2: extra HMM states remember mate

Idea 3: try lots of combinations of "some hairpins"

Idea 4: chain together several filters (select via Dijkstra)

for some
hairpins

Filter Chains

Fig. 2. Filter creation and selection. Filters for Rfam tRNA (RF00005) generated by the store-pair and sub-CM techniques and those selected for actual filtering are plotted by filtering fraction and run time. The CM runs at 3.5 secs/kbase. The four selected filters are run one after another, from highest to lowest fraction.

Heuristic Filters

Rigorous filters optimized for worst case Possible to trade improved speed for small loss in sensitivity?

Yes – profile HMMs as before, but optimized for average case

"ML heuristic": train HMM from the infinite alignment generated by the CM

Often 10x faster, modest loss in sensitivity

Heuristic Filters

Fig. 1. Selected ROC-like curves. All plot sensitivity against filtering fraction, with filtering fraction in log scale. (A) RF00174 is typical of the other families; the ML-heuristic is slightly better than the rigorous profile HMM, and both often dramatically exceed BLAST. (B) Atypically, in RF00005, BLAST is superior, although only in one region. (C) BLAST performs especially poorly for RF00031. (Recall that rigorous scans were not possible for RF00031, so only ~90% of hits are known; see text.) The supplement includes all ROC-like curves, and the inferior ignore-SS.

Task 4: Motif Discovery

RNA Motif Discovery

Typical problem: given a ~10-20 unaligned sequences of ~1kb, most of which contain instances of one RNA motif of, say, 150bp -find it.

Example: 5' UTRs of orthologous glycine cleavage genes from γ-proteobacteria

Approaches

Align sequences, then look for common structure

Predict structures, then try to align them Do both together

"Obvious" Approach I: Align First, **Predict from Multiple Sequence Alignment**

- ... GA ... UC GA UC ...
- ... GA ... UC ...
- CA UG
- ... CC ... GG ...

... UA ... UA ... Î

Compensatory mutations reveal structure, (core of "comparative sequence analysis") but usual alignment algorithms penalize them (twice)

Knudsen & Hein, Pfold: RNA secondary structure prediction using stochastic context-free grammars, Nucleic Acids Research, 2003, v 31,3423–3428

Pitfall for sequence-alignmentfirst approach

Structural conservation \neq Sequence conservation

Alignment without structure information is unreliable

CLUSTALW alignment of SECIS elements with flanking regions

same-colored boxes should be aligned

Approaches

Align sequences, then look for common structure

Predict structures, then try to align them

single-seq struct prediction only ~ 60% accurate; exacerbated by flanking seq; no biologicallyvalidated model for structural alignment

Do both together

- Sankoff good but slow
- Heuristic

"Obvious" Approach II: Fold First

Predict secondary RNA structure using MFOLD or Vienna

Problems

- false folding predictions
- comparing structures

Our Approach: CMfinder

Simultaneous alignment, folding and CMbased motif description using an EM-style learning procedure

Yao, Weinberg & Ruzzo, Bioinformatics, 2006

Cmfinder---A Covariance Model Based RNA Motif Finding Algorithm Bioinformatics, 2006, 22(4): 445-452

Zizhen Yao

Zasha Weinberg Walter L. Ruzzo University of Washington, Seattle

Design Goals

Find RNA motifs in unaligned sequences Seq conservation exploited, but not required Robust to inclusion of unrelated sequences Robust to inclusion of flanking sequence Reasonably fast and scalable Produce a probabilistic model of the motif that can be directly used for homolog search

Alignment \rightarrow CM \rightarrow Alignment

Similar to HMM, but much slower Builds on Eddy & Durbin, '94

But new way to infer which columns to pair, via a principled combination of mutual information and predicted folding energy And, it's local, not global, alignment (harder)

CMfinder Outline

M-step uses M.I. + folding energy for structure prediction

Initial Alignment Heuristics

fold sequences separately candidates: regions with low folding energy compare candidates via "tree edit" algorithm find best "central" candidates & align to them BLAST anchors L_i = column *i*; $\sigma = (\alpha, \beta)$ the 2^{ary} struct, α = unpaired, β = paired cols

Our goal is to find $\hat{\sigma} = \arg \max_{\sigma} P(D, \sigma)$. Assuming independence of non-base paired columns, then

$$P(D|\sigma) = \prod_{k \in \alpha} P(L_k) \prod_{(i,j) \in \beta} P(L_i L_j)$$
(2)
$$= \prod_{1 \le k \le l} P(L_k) \prod_{(i,j) \in \beta} \frac{P(L_i L_j)}{P(L_i) P(L_j)}$$
(3)

Let

$$I_{ij} = \log \frac{P(L_i L_j)}{P(L_i)P(L_j)}$$

With MLE params, I_{ij} is the *mutual information* between cols *i* and *j*

Let s_i be the prior for column *i* to be single stranded, and p_{ij} the prior for columns i, j to be base paired, then $P(\sigma) = \prod_{k \in \alpha} s_k \prod_{(i,j) \in \beta} p_{ij}$, and $P(D, \sigma)$ can be rewritten as

$$P(D,\sigma) = P(D|\sigma)P(\sigma)$$

=
$$\prod_{1 \le k \le l} P(L_k)s_k \prod_{(i,j) \in \beta} \frac{P(L_iL_j)}{P(L_i)P(L_j)} \frac{p_{ij}}{s_is_j}$$
(4)

Let

$$K_{ij} = \log\left(\frac{P(L_i L_j)}{P(L_i)P(L_j)}\frac{p_{ij}}{s_i s_j}\right) = I_{ij} + \log\frac{p_{ij}}{s_i s_j},$$

then the maximum likelihood structure σ maximizes $\sum_{(i,j)\in\beta} K_{ij}$. Can find it via a simple dynamic programming alg.

CMfinder Accuracy (on Rfam families *with* flanking sequence)

Families

Summary of Rfam test families and results

ID	Family	Rfam ID	#seqs	%id	length	#hp	CMfinder	CW/Pfold	CW/RNAalifold	Carnac	Foldalign	ComRNA
1	Cobalamin	RF00174	71	49	216	4	0.59	0.05	0	Х	-	0
2	ctRNA_pGA1	RF00236	17	74	83	2	0.91	0.70	0.72	0	0.86	0
3	Entero_CRE	RF00048	56	81	61	1	0.89	0.74	0.22	0	-	0
4	Entero_OriR	RF00041	35	77	73	2	0.94	0.75	0.76	0.80	0.52	0.52
5	glmS	RF00234	14	58	188	4	0.83	0.12	0.18	0	-	0.13
6	Histone3	RF00032	63	77	26	1	1	0	0	0	-	0
7	Intron_gpII	RF00029	75	55	92	2	0.80	0.30	0	0	-	0
8	IRE	RF00037	30	68	30	1	0.77	0.22	0	0	0.38	0
9	let-7	RF00027	9	69	84	1	0.87	0.08	0.42	0	0.71	0.78
10	lin-4	RF00052	9	69	72	1	0.78	0.51	0.75	0.41	0.65	0.24
11	Lysine	RF00168	48	48	183	4	0.77	0.24	0	Х	-	0
12	mir-10	RF00104	11	66	75	1	0.66	0.59	0.60	0	0.48	0.33
13	Purine	RF00167	29	55	103	2	0.91	0.07	0	0	-	0.27
14	RFN	RF00050	47	66	139	4	0.39	0.68	0.26	0	-	0
15	Rhino_CRE	RF00220	12	71	86	1	0.88	0.52	0.52	0.69	0.41	0.61
16	s2m	RF00164	23	80	43	1	0.67	0.80	0.45	0.64	0.63	0.29
17	S_box	RF00162	64	66	112	3	0.72	0.11	0	0	-	0
18	SECIS	RF00031	43	43	68	1	0.73	0	0	0	-	0
19	Tymo_tRNA-like	RF00233	22	72	86	4	0.81	0.33	0.36	0.30	0.80	0.48
				Average Accuracy:		0.79	0.36	0.28	0.17	0.60	0.19	
				Avera	ige Specif	ficity:	0.81	0.42	0.57	0.83	0.60	0.65
		Average Sensitivity:		tivity:	0.77	0.36	0.23	0.13	0.61	0.17		
Task 5: Application

Genome-wide search for cis-regulatory RNA elements (in prokaryotes, initially)

Searching for noncoding RNAs

CM's are great, but where do they come from?

An approach: comparative genomics

Search for motifs with common secondary structure in a set of functionally related sequences.

Challenges

Three related tasks

Locate the motif regions.

Align the motif instances.

Predict the consensus secondary structure.

Motif search space is huge!

Motif location space, alignment space, structure space.

Predicting New cis-Regulatory RNA Elements

Goal:

Given unaligned UTRs of coexpressed or orthologous genes, find common structural motifs

Difficulties:

Low sequence similarity: alignment difficult

Varying flanking sequence

Motif missing from some input genes

Approach

Choose a bacterial genome
For each gene, get 10-30 close orthologs (CDD)
Find most promising genes, based on conserved sequence motifs (Footprinter)
From those, find structural motifs (CMfinder)
Genome-wide search for more instances (Ravenna)
Expert analyses (Breaker Lab, Yale)

A pipeline for RNA motif genome scans

Genome Scale Search: Why

Most riboswitches, e.g., are present in ~5 copies per genome

Throughout (most of) clade

More examples give better model, hence even more examples, fewer errors

More examples give more clues to function - critical for wet lab verification

Genome Scale Search

CMfinder is directly usable for/with search

Footprinter finds patterns of conservation

Upstream of folC

A blind test

1ST genome scan: 2ND genome scan: **The motif turned out to be T box** Match to RFAM T box family: False Positives: 234 sequences447 sequences

299 OF 342 89/148 are probable (upstream of annotated tRNA-synthetase genes)

AUAUC.CUUACGU.UCCAGAGAGCUGAUGGCCGGUGAAA.AUCAGCACAGACGGAUAUAU CAAAU.GUCGUUUcUUAUAGAGA<mark>GUCGAU</mark>GGUUGGUGGAA.AUCGAUAG.AAACAGUUUG AAAAG</mark>UAGAACCG.AUCUAGCGAAUUGAGGAU.GGUGGAGCUCAGUGC.GGAAAGCUUUU CAAAU.GUCGUUUcUUAUAGAGAGUCGAUGGUUGGUGGAA.AUCGAUAG.AAACAGUUUG

CGAA..UACACUCAUGAACCGCUUUUGCAAACAAAGccggccaggcuuucAGUA.GUGAAAG UGAA..UCCAUCCUGGAAU..CGAAUGUGGAAUAUCUuuuggauu....AGUAAGCAUUCC AGAAAAUC.ACUCUUGAGUU.UUCAUUACGAAA..CA.....AGUAGUAAUGGA UGAA..UCCAUCCUGGAAU..GGAAUGUGGAAUAUCUuuaugauu....AGUAAACAUUCC

tyrS T box structure

Results

Process largely complete in bacillus/clostridia gamma proteobacteria cyanobacteria actinobacteria firmicutes Analysis ongoing

Some Preliminary Actino Results 8 of 10 Rfam families found

Rfam Family	Type (metabolite)	Rank	
THI	riboswitch (thiamine)	4	
ydaO-yuaA	riboswitch (unknown)	19	
Cobalamin	riboswitch (cobalamin)	21	
SRP_bact	gene	28	
RFN	riboswitch (FMN)	39	not cis-
yybP-ykoY	riboswitch (unknown)	48	regulatory
gcvT	riboswitch (glycine)	53	(got one
S_box	riboswitch (SAM)	401	anyway)
tmRNA	gene No	ot found	•
RNaseP	gene No	ot found	•

Preliminary results of genome scan

Top 115 datasets (some are redundant) 13 T box, 22 riboswitches, 30 ribosomal genes RNase P, tRNA, CIRCE elements and other DNA binding sites

Gene	#motif	hits	RFAM	#seed	#full	#TP	specificity	sensitivity
metK	13	150	S_box	71	151	145	0.967	0.960
ribB	9	106	RFN	48	114	97	0.915	0.851
folC	9	447	T_box	67	342	299	0.669	0.874
xpt	14	106	Purine	37	100	97	0.915	0.970
glmS	16	33	glmS	14	37	33	1.000	0.892
thiA	16	305	тні	237	366	305	1.000	0.833
ykoY	10	34	yybP-ykoY	74	127	33	0.971	0.260

More Prelim Actino Results

Many others (not in Rfam) are likely real; of top 50:

known (Rfam, 23S)10probable (Tbox, CIRCE, LexA, parP, pyrR)7probable (ribosomal genes)9potentially interesting12unknown or poor12One bench-verified, 3-4 more in progress

A mRNA leader

				P1		_		
	-35 -40	155	_	P2			000	Cinci
	-35 -10					<u> </u>	R.Da	otart
3 90	HESSIAN, 17 . MARCHIN.	10.RARACGAUGU	ingese <mark>ne</mark> nese	<mark>6</mark> GUUUUUG	UGGC.CAAGE	GCRUCUG.05.	REGACU.	08.405
3he	7655976.17. Heater.	17.AUUACCAUGU	NICCGCUG . CRG	GGGURGRAG	. COGUCAUGI	GCAUCUG.06.	RGGRGG.	11.ADG
oih	TEGRAC.17. PARASE.	31.UARACGRUGU	NCCCCC <mark>UG</mark> .UC.	CCAUACUU	GUUCAUGS	GCRUNAG.06.	AGGAGU.	07. <mark>805</mark>
Bee	TECTA.18. PARSON.	36.UURAC <mark>GRUGU</mark>	NCCGCUG, URA	. OUCAUURAGACO.	. UUR. URAGE	GCRUCUG: 05.	AGGAGA.	09. <mark>806</mark>
GÈR	rescer.17. sancar.	38. RARACCAUCU	UCCCCUG, CRA	UGA.AGAGAOC	AUUGGCAUGS	acaucus.04.	AGGAGU.	08.406
Bc2	TESPEC.17. PARCAT.	45 . AUUACCAUAU	weecee <mark>ue</mark> .cue	CAGUGU	. UGG. CAUGE	AUCUCUC.06.	ACCACC.	10. <mark>AUG</mark>
Sec.	APGACA.17. GARAGE.	35. AURACCAUCU	NICCGC <mark>UG</mark> . CR.	AUAAAGAAAGUCUG	UG. CAAGE	GCRUCUG.05.	AGGAGU.	08.405
LR0	TTINCA, 17. TANCOL	28. AUAACCAUAI	UCCCC <mark>UU</mark> , CAU	UAUUAAU	. AUG. AAUGA	AUCUR <mark>UC.05</mark> .	ACCACA.	07.400
Sau	терала, 17. <mark>салсат</mark> .	23. AUCAC	lucese <mark>us</mark> , cu.	.AUAUAUUUGUCG.	AGGCAAGE	ACAURGS.04.	AGAGGA.	09.405
Cpe	тталас. 18. таласт.	08.0UACC <mark>COCC</mark> O	UCCUCUCUCUCAC	ΑΟΛΟ	00000002202	ACOUCAA. 17.	A60206.	08.403
chy	TESCAR, 17. MARRAY	09.UACCRARCED	UCCCCUG. GR.	CAGGGGGC	UC.CAUGE	ACCUSCC.03.	AGGAGG.	09.805
8100	TYCAGE, 17 . PRARAT.	16. RARAACCUCT	UCCCCC <mark>UG</mark> , CRU	U ARACUAR	AAUG. UAUGA	ACACCUV.05.	AGGAGG.	07. <mark>AUG</mark>
Ame	TTGCGG. 17. TATAXT.	10.UUACGGGGGG	UCCUCUTA . UAC		.GUA.UAAG	acoucus.07.	ageage	07.403
Dzie	TROCCC. 17. TREAM.	16.UUACCCACC	uccec <mark>ue</mark> , ceu	CUGGGAA	ACC. URACE	accucua.01.	ACCARC.	12.CUC
2pc	TTIACT, 17 . PARACT.	28. AUACACHUUN	Weegeug . Asa	A AGAU	DCCU. CANCO	UCGACAA.04.	AGAGAS	05.403
880	TERRON, 17. MICHNY	26. AAACCCCUM	Meccecue. Ac.	ACAGAGCA	CU.UAUOU	UUAGUAA.04.	ACCACA.	07.408
Lo-2	1000000.18. #AMOTON.	21.UUAACGAUGU	Mecocue. Ac.	CAGOUU	GU. CACO.	AUGUC 60.04.	200220	09-808
Bfa	TTTACA. 17. TAXACT.	28. AUUACAAUAU	Necocita, Log	CA 0558 00	ACCA UAAO	AUAULUO.06.	200202	08-403
L_{TO}	TTTACA. 17. TAXACT.	25. ITUADOGOUAD	lifececilis, sea	C	COLORDON A LOS	auoceour. og .	200303	07-508
St.b.	TAGACA, 17, TAAGAT.	29 JUAACOGCUAZ	uccocua, aoa	CACAGAGGUL. DO	cucu, ua soa	UUAGUAA.03.	200200	08-403
Lac	TTAAAA, 17. TTAATT.	39. JULAUGOOUAL	Meegeug, Acq		. conveaues	augeceas. 03.	AGEAGA	10.403
Sor	197303, 17 . PARISAN	29 JULACOCCUA	WEEGEUA . NG.	acaaqua	CU.UANO	UUACUAA.03.	846868	06-503
Les	1004030.17.003300	20. ACARC	urecocua, aca	CAAGA	COULARUES	auaucus. 06.	846858	07.402
L = 2	100 ET41, 17	24 AUAACZAUAL	Weegeug. c.	AACUG	Gacau	ancor 06.04	REGRAM	07.502
Zne	1000000.17.000000	12 ALUUCZIAUAU	MCCOCUU, URA		UUA AAU	a0a0000.04	AGGAAG	02.402
7.00	14-04-04-01 17 MR. 19-04-04-04	12.ALU0001000	ULCECUU . URA	UAAA	. UUA. AAU	<u>euros</u> or.04.	AGGLAG .	DZ _ 102

Ongoing & Future Work

Still automating a few steps, e.g. identifying duplicates

Improved ranking/motif significance stats

Better ortholog clustering

Performance & scale-up

Eukaryotic mRNAs, e.g. UTRs

Summary

ncRNA - apparently widespread, much interest

Covariance Models - powerful but expensive tool for ncRNA motif representation, search, discovery

Rigorous/Heuristic filtering - typically 100x speedup in search with no/little loss in accuracy

CMfinder - CM-based motif discovery in unaligned sequences