CSE 527

Phylogeny \& RNA: Pfold

Lectures 20-21
Autumn 2006

Modeling Sequence Evolution

Simple but useful models; assume:
Independence of separate positions Independence of separate lineages Stationarity - e.g., nuc freqs aren't changing Markov property - nuc at a given position is independent of nuc there t_{2} years ago given nuc there $t_{1}<t_{2}$ years ago.

Phylogenies (aka Evolutionary Trees)

"Nothing in biology makes sense, except in the light of evolution"
-- Dobzhansky

Simple Example: Jukes-Cantor

Rate matrix $\mathrm{R}=$

	A	C	G	T	rate of C $\rightarrow T$ changes
per unit					
time					

Consequences:
equilibrium nuc freqs π_{i} all $=1 / 4$
diagonal
s.t. row
sums $=0$
all changes equally likely

Multiplicativity

Matrix $\mathrm{Pt}[i, j]$: prob of change $\mathrm{i} \rightarrow \mathrm{j}$ in time t

$$
\mathrm{P}^{s+t}[\mathrm{i}, \mathrm{j}]=\Sigma_{\mathrm{k}} \mathrm{Ps}[\mathrm{i}, \mathrm{k}] \mathrm{P}[\mathrm{k}, \mathrm{j}]
$$

I.e.,
$\mathrm{P}^{\mathrm{s}+\mathrm{t}}=\mathrm{Ps}^{\mathrm{pt}}$

Jukes-Cantor, cont.

Solving $\quad \frac{d}{d t} P^{t}=P^{t} R$

Gives $P^{t}=$| r | s | s |
| :---: | :---: | :---: |
| s | r | s |
| s | s | s |
| s | r | s |
| s | s | s |

where
$r=(1+3 \exp (-4 a t)) / 4$
$s=(I-\exp (-4 a t)) / 4$

Finding Change Probabilities

For small time ε, transition probabilities

$$
P^{\varepsilon} \approx I+\varepsilon R
$$

By multiplicativity

$$
\begin{aligned}
& \mathrm{P}^{\mathrm{t}+\varepsilon}=\mathrm{P}^{\mathrm{t}} \mathrm{P}^{\varepsilon} \approx \mathrm{P}^{\mathrm{t}}(\mathrm{I}+\varepsilon \mathrm{R}) \\
& \left(\mathrm{P}^{\mathrm{t}+\varepsilon}-\mathrm{P}^{\mathrm{t}}\right) / \varepsilon \approx \mathrm{P}^{\mathrm{t}} \mathrm{t}
\end{aligned}
$$

l.e., solve system of diff eqns:
$\frac{d}{d t} P^{t}=P^{t} R$

Other Models

Jukes-Cantor is simple, but inaccurate for some uses. E.g.,

Many genomes deviate sharply from $\pi_{i}=I / 4$
In fact, "transversions"
(purine $\{\mathrm{A}, \mathrm{G}\} \leftrightarrow$ pyrimidine $\{\mathrm{C}, \mathrm{T}\}$)
less frequent than "transitions"
(pur \leftrightarrow pur or pyr \leftrightarrow pyr).
Various other models often used

General Reversible Model

Model is reversible if for all i, j
$\pi_{i} \mathrm{P}[\mathrm{i}, \mathrm{j}]=\pi_{\mathrm{i}} \mathrm{P}[\mathrm{j}, \mathrm{i}]$
I.e., $i \rightarrow j$ and $j \rightarrow i$ changes are equally frequent; statistically, the past looks like the future

No closed form solution for $\frac{d}{d t} P^{t}=P^{t} R$
but numerically solvable using but numerically solvable using eigenvalues of rate matrix R

Evolutionary Models: Key points

Given small number of parameters (e.g., 4×4 symmetric rate matrix, ...), an evolutionary tree, and branch lengths, you can calculate probabilities of
 changes on the tree

Uses: Example 2

What if ancestral state unknown?
$\Sigma_{\mathrm{a}} \pi_{\mathrm{a}} \mathrm{P}\left(\mathrm{t}_{1}, \mathrm{a} \rightarrow \mathrm{G}\right) * \mathrm{P}\left(\mathrm{t}_{2}, \mathrm{a} \rightarrow \mathrm{T}\right)$
draw a at root from equilibrium distribution

Uses: Example 3

What if sequences at leaves and ancestral sequence unknown?

$\prod_{u=1}^{n} \sum_{a_{u}} \pi_{a_{u}} P\left(t_{1}, a_{u} \rightarrow x_{u}^{1}\right) P\left(t_{2}, a_{u} \rightarrow x_{u}^{2}\right)$

Uses: Example 4
What if branch lengths also unknown?

Can find MLE by numerical optimization of

$\arg \max _{t_{1}, t_{2}} \prod_{u=1}^{n} \sum_{a_{u}} \pi_{a_{u}} P\left(t_{1}, a_{u} \rightarrow x_{u}^{1}\right) P\left(t_{2}, a_{u} \rightarrow x_{u}^{2}\right)$

Uses: Example 5

What if Tree also unknown?

Can try MLE of tree topology, too (>> parsimony)

Figure 8.3 The log likelihood $P\left(x^{1}, x^{2} \mid T, t_{1}, t_{2}\right)$ given by (8.9), with $n_{1}=$ $100, n_{2}=250$, and with $n_{1}=1000, n_{2}=2500$. The latter curve is sharper, as there are more data to define the maximum likelihood peak. The curves have been shifted so their peaks superimpose.

A Complex Question:
Given data (sequences, anatomy, ...) infer the phylogeny
A Simpler Question:
Given data and a phylogeny, evaluate "how much change" is needed to fit data to tree

Parsimony

General idea ~ Occam's Razor: If change is rare, prefer explanations requiring few changes

Parsimony

General idea ~ Occam's Razor: If change is rare, prefer explanations requiring few changes
Human ATGGT...
Chimp ATGGT...
Gorilla A T G A G ...
Rat A T G C G ...
Mouse A T G C T ...

Parsimony

General idea ~ Occam's Razor: If change is rare, prefer explanations requiring few changes

Parsimony

General idea ~ Occam's Razor: If change is rare, prefer explanations requiring few changes

Human

Likelihood

Given a statistical model of evolutionary change, prefer the explanation of maximum likelihood

Sankoff \& Rousseau, ‘75

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s

Sankoff-Rousseau Recurrence

$P_{u}(s)=$ best parsimony score of subtree rooted at node u, assuming u is labeled by character s For leaf u :

$$
P_{u}(s)= \begin{cases}0 & \text { if } u \text { is a leaf labeled } s \\ \infty & \text { if } u \text { is a leaf not labeled } s\end{cases}
$$

For internal node u :

$$
P_{u}(s)=\sum_{v \in \operatorname{child}(u)} \min _{t \in\{A, C, G, T\}} \operatorname{cost}(s, t)+P_{v}(t)
$$

Time: O(alphabet ${ }^{2} \times$ tree size)

So, Parsimony easy;
 What about Likelihood?

Straightforward generalization of "simple" formula for 2-leaf tree

$$
\prod_{u=1}^{n} \sum_{a_{u}} \pi_{a_{u}} P\left(t_{1}, a_{u} \rightarrow x_{u}^{1}\right) P\left(t_{2}, a_{u} \rightarrow x_{u}^{2}\right)
$$

is infeasible, since you need to consider all (exponentially many) labelings of non-leaf nodes. Fortunately, there's a better way...

Another Application:

RNA folding

BIOINFORMATICS

RNA secondary structure prediction using stochastic context-free grammars and evolutionary history
B. Knudsen and J. Hein

Pfold: RNA secondary structure prediction using stochastic context-free grammars
Bjarne Knudsen* and Jotun Hein ${ }^{1}$

Felsenstein Recurrence

$L_{u}(s \mid \theta)=$ Likelihood of subtree rooted at node u, assuming u is labeled by character s, given θ
For Leaf u:

$$
L_{u}(s \mid \theta)= \begin{cases}1 & \text { if } u \text { is a leaf labeled } s \\ 0 & \text { if } u \text { is a leaf not labeled } s\end{cases}
$$

For Internal node u:

$$
L_{u}(s \mid \theta)=
$$

$$
\prod_{v \in \operatorname{child}(u)} \sum_{t \in\{A, C, G, T\}} P(s \rightarrow t \mid \text { length }(u, v), \theta) \cdot L_{v}(t \mid \theta)
$$

Using Evolution for RNA Folding

Assume you have
I. Training set of trusted RNA alignments build evo model for unpaired columns build evo model for paired columns
2. Alignment (\& tree) for some RNAs presumed to have an (unknown) common structure
look at every col pair - better fit to paired model or 2 indp unpaired models? (Alternative to mutual information, using evo)

Training Data

Trusted alignments of 1968 tRNAs + 305 LSU rRNAs

Table 1. Base frequencies, showing nearly equal overall distribution of bases, with a slight underrepresentation of Cs. Stems have high GC/CG base pair frequencies, while loops have low content of Cs and Gs . The lowest row shows the distribution of bases between loops and stems

Stem		Loop		Overall	
AU/UA	35.6%	A	36.4%	A	26.8%
GC/CG	53.4%	C	15.1%	C	21.4%
UG/GU	9.8%	G	21.2%	G	26.7%
Other	1.2%	U	27.3%	U	25.1%
Total: 52.6%			Total:	47.4%	

Rate Matrix (Paired)

Table 3. Some of the entries for the stem rate matrix. Only rates between the six most frequent base pairs are shown

$X \backslash Y$	AU	UA	GC	CG	UG	GU
AU	-1.16	0.18	0.50	0.12	0.02	0.27
UA	0.18	-1.16	0.12	0.50	0.27	0.02
GC	0.33	0.08	-0.82	0.13	0.02	0.23
CG	0.08	0.33	0.13	-0.82	0.23	0.02
UG	0.08	1.00	0.10	1.26	-2.56	0.04
GU	1.00	0.08	1.26	0.10	0.04	-2.56

Rate Matrix (Unpaired)

Table 2. The entries, $r_{X Y}$, for the loop rate matrix. Transitions are more frequent than transversions

$X \backslash Y$	A	C	G	U
A	-0.75	0.16	0.32	0.26
C	0.40	-1.57	0.24	0.93
G	0.55	0.17	-0.96	0.24
U	0.35	0.51	0.19	-1.05

What about Gaps?

option I: evo model for them

- hard \& slow
option 2: treat "-" as a 5th character
- they don't "evolve" quite like others
option 3: treat "-" as unknown

- end up pairing? (drop if < 75\%)
+ easy

Which Tree?

KH-99 : try to find MLE tree (using SCFG et al.) good but slow
$\mathrm{KH}-03$: est tree without structure
average unpaired \& (marginalized) paired rates calc pairwise distances between seqs tree topology from "neighbor joining" MLE tree branch lengths

Synopsis of last lecture

Based on simplifying assumptions (stationarity, independence, Markov, reversible), there are simple sequence-evolution models with a modest number of parameters giving, e.g., $\operatorname{Pr}(\mathrm{G} \rightarrow \mathrm{T} \mid 1.5 \mathrm{~m} \mathrm{yr}), \ldots$ It can model base-pairing in RNA, too
Felsenstein allows ML estimation of probabilities, branch lengths, even trees,... in this model.
(Somewhat like "parsimony" algorithm, but better.)
Goal: Use all this for inference of RNA 2ary struct

$$
\begin{aligned}
& \text { The Glue: a) } S \rightarrow L S \rightarrow \text { LLLLLLLLS } \rightarrow \text { LLLLLLLLL } \\
& \text { An SCFG } \\
& \rightarrow \text { ssLsssss } \rightarrow \text { ssdFdsssss } \\
& \rightarrow \text { ssdddFdddsssss } \\
& \rightarrow \text { ssdddLSdddsssss } \\
& S \rightarrow L S \mid L \\
& L \rightarrow s \quad \mid d F d \\
& F \rightarrow L S \mid d F d \\
& \text { b) } \\
& { }^{s s}{ }_{d-d}^{s} \\
& \begin{array}{l}
d-d \\
d-d
\end{array} \\
& { }_{s s}{ }^{d}-d_{s s s s s} \\
& \text { c) } F \quad \rightarrow \quad d F d \rightarrow d d F d d \rightarrow d d L S d d \\
& \rightarrow d d L L d d \rightarrow d d L s d d \rightarrow d d d F d s d d
\end{aligned}
$$

Full SCFG

$$
\begin{array}{llll}
S \rightarrow L S & (0.868534) & \mid L & (0.131466) \\
L \rightarrow S & (0.894603 * \mathrm{p}(\mathrm{~s})) & \mid d F d & (0.105397 \star \mathrm{p}(\mathrm{dd})) \\
F \rightarrow L S & (0.212360) & \mid d F d & (0.787640 * \mathrm{p}(\mathrm{dd}))
\end{array}
$$

Where $p(s) \& p(d d)$ are the probabilities of the single/paired alignment columns s/dd as calculated by the Felsenstein algorithm based on the fixed evolutionary model and the given tree topology and branch lengths.

Cocke-Kasami-Younger for CFG

Suppose all rules of form $A \rightarrow B C$ or $A \rightarrow a$
(by mechanical grammar transform, or use orig grammar \& mechanically transform alg below...)
Given $x=x_{1} \ldots x_{n}$, want $\mathrm{M}_{\mathrm{i}, \mathrm{j}}=\left\{\mathrm{A} \mid \mathrm{A} \rightarrow x_{i+1} \ldots x_{j}\right\}$
For $\mathrm{j}=2$ to n
$\mathrm{M}[\mathrm{i}-\mathrm{I}, \mathrm{j}]=\left\{\mathrm{A} \mid \mathrm{A} \rightarrow x_{j}\right.$ is a rule $\}$
for $\mathrm{i}=\mathrm{j}$ - I down to I
$M[i, j]=U_{i<k<j} M[i, k] \otimes M[k, j]$
Where $X \otimes Y=\{A \mid A \rightarrow B C, B \in X$, and $C \in Y\}$

What SCFG Gives

"Prior" probabilities for
fraction paired vs unpaired
lengths of each
frequency of bulges in stems
etc., and
Inherits column probabilities from evo model

The "Inside" Algorithm for SCFG
 (analogous to HMM "forward" alg)

Just like CKY, but instead of just recording possibility of A in $M[i, j]$, record its probability:
For each A, do sum instead of union, over all possible k and all possible $A \rightarrow B C$ rules, of products of their respective probabilities.

Result: for each $\mathrm{i}, \mathrm{j}, \mathrm{A}$, have $\operatorname{Pr}\left(\mathrm{A} \rightarrow x_{i+1} \ldots x_{j}\right)$
(There's also an "outside" alg, analogous to backward...)

The "Viterbi" algorithm for SCFGs
Just like inside, but use max instead of sum.

So what's the structure?

The usual dynamic programming traceback: Starting from S in upper right corner of matrix, find which k and which $S \rightarrow B C$ gave max probability, then (recursively) find where that B and that C came from...
(Really, you want to do it with the $\mathrm{F} \rightarrow \mathrm{dFd}$ grammar, and where those rules are used tells you where the base pairs are.)

Results \& Validation

KH-99: 4 bacterial RNAse P, 340-380 nt

Fig. 2. The phylogenetic tree relating the four analysed sequences as calculated using the ML estimation described above. The length units correspond to the rate matrices of the model.

Good Overall Structure Prediction

Fig. 3. The alignment of the four RNase P RNA sequences. The predicted structure, using all four sequences, is denoted p. The structure fro
 in the databas. The curly brackets denote positions where the structure differs: the sequenes shat have a non-standard pair in these position
have loop regions or bulges, the rest have pairs.

Not bad, even with only one seq

Table 7. Accuracy table, showing comparisons of single sequence predictions using the method described in this paper and MFOLD Version 3.0, by Zuker (1989) and Walter et al. (1994). Predictions of secondary structures were made on single sequences, which is the only possibility using MFOLD. The average results are comparable

Sequence	SCFG method	MFOLD
Seq 1	57.7%	67.1%
Seq 2	48.2%	54.0%
Seq 3	41.2%	35.6%
Seq 4	46.2%	50.3%
Average	48.3%	51.7%

More
Sequences
Solp phylogeny
and a good
alignment

Figure 7. Accuracy as a function of pairwise distance between two sequences being analysed. As in Figure 6, crosses are from results using 'correct' alignments, while boxes are from ClustalW alignments. The pairs were grouped according to their Jukes-Cantor distances, in the intervals $[0 ; 0.2),[0.2 ; 0.4)$, $[0.4 ; 0.6)$ etc. The points represent average results for 50 random sequence combinations from a specific range of distances. The x-value of a point is the average of the 50 distances.

Course Wrap Up

Course Project Presentations

Wednesday, I2/I3, I:00-2:30
CSE 674

Everyone's invited

CS/Math/Stats Points of Contact

Scientific visualization

Gene expression patterns
Databases
Integration of disparate, overlapping data sources
Distributed genome annotation in face of shifting underlying coordinates
AI/NLP/Text Mining
Information extraction from journal texts with inconsistent nomenclature, Information extraction from journal texts
indirect interactions, incomplete/inaccurate models,.
Machine learning
System level synthesis of cell behavior from low-level heterogeneous data (DNA sequence, gene expression, protein interaction, mass spec,
Algorithms

Frontiers \& Opportunities

New data:
Proteomics, SNP, arrays CGH, comparative sequence information, methylation, chromatin structure, ncRNA, interactome
New methods:
graphical models? rigorous filtering?
Data integration
many, complex, noisy sources
Systems Biology

Frontiers \& Opportunities

Open Problems:
splicing, alternative splicing
multiple sequence alignment (genome scale, w/ RNA etc.)
protein \& RNA structure
interaction modeling
network models
RNA trafficing
ncRNA discovery
...

Exciting Times

Lots to do
Various skills needed
I hope l've given you a taste of it

