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Phylogenies
(aka Evolutionary Trees)

“Nothing in biology makes sense, except in
the light of evolution”
-- Dobzhansky



Modeling Sequence Evolution

Simple but useful models; assume:
Independence of separate positions
Independence of separate lineages
Stationarity - e.g., nuc fregs aren’t changing

Markov property - nuc at a given position
is independent of nuc there t, years ago
given nuc there t, < t, years ago.



Simple Example: Jukes-Cantor

rate of
C—T
A C G T changes
per unit
A -3a a a a fime
Rate matrix R= | C a | -3a | a @< |
G a a -3a a
T a a a -3a
Consequences: diagonal
epel s _ s.t. row
equilibrium nuc fregs =, all = 1/4 sums = 0

all changes equally likely



Multiplicativity

Matrix Pi,j]: prob of change i — j in time t
Ps*[i,j] = 2, P°[i,k] P[k,j]
e,

Ps+t — Ps Pt



Finding Change Probabilities

For small time ¢, transition probabilities
Pt~ | +¢R

By multiplicativity

Ptre = Pt Pt = Pt (] + ¢ R)
(Pe-PY /e=PtR

l.e., solve system of diff egns:

iPt =P'R
dt




Jukes-Cantor, cont.

d
Solving EPI =P'R
r{s|sS|S
Gives Pt = 11 where
S|S|r|S
slsl|slr| r=(1+3 exp(-4at))/4

s = (I - exp(-4at))/4



Other Models

Jukes-Cantor is simple, but inaccurate for
some uses. E.g.,

Many genomes deviate sharply from w, = |/4
In fact, “transversions”
(purine {A,G} <= pyrimidine {C,T})
less frequent than “transitions”
(pur <= pur or pyr <> pyr).
Various other models often used



General Reversible Model

Model is reversible if for all i, |

m; Plij] = m; Pljsi]
l.e., i—j and j—i changes are equally frequent;
statistically, the past looks like the future

: d
No closed form solution for — P’ =P'R
but numerically solvable using dt
eigenvalues of rate matrix R



Evolutionary Models: Key points

Given small number of |
parameters (e.g., 4 x 4
symmetric rate matrix, ...), f
an evolutionary tree, and

branch lengths, you can x
calculate probabilities of X,
changes on the tree




Uses: Example |

Probability of changes shown
on this (given) tree:

P(t,,G—G) * P(t,,G—T)




Uses: Example 2

What if ancestral state
unknown?

> P(t,, a—G) * P(t,, a—T)

| G

draw a at root from
equilibrium distribution




Uses: Example 3

What if sequences at leaves |
and ancestral sequence a
unknown! f

H _12 w, P(t,a, — x)P(t,,a, — x_)



Uses: Example 4

What if branch lengths |
also unknown? a

Can find MLE by numerical

optimization of , *u
X
U

" 1 2
argmax, Hu=12a n, P(t,a, = x,)P(t,a, = x,)



-
......
------
-----
-------------------------------

Reversible
model;
you can’t
place root

é 10

Figure 8.3 The log likelihood P(x!,x*|T,t1,t;) given by (8.9), with ny =
100, n, = 250, and with n; = 1000,n, = 2500. The latter curve is sharper,
as there are more data to define the maximum likelihood peak. The curves
have been shifted so their peaks superimpose.



Uses: Example 5

What if Tree also unknown?

X4 X3 X4 X3
X2 X4 X, X4

Can try MLE of tree topology, too (>> parsimony)



A Complex Question:
Given data (sequences, anatomy, ...) infer the
phylogeny

A Simpler Question:

Given data and a phylogeny, evaluate “how much
change” is needed to fit data to tree



Parsimony

General idea ~ Occam’s Razor: If change is
rare, prefer explanations requiring few changes

Human AT GA T ..
Chimp ATGAT..
Gorilla AT GAG..
Rat AT GCG..
Mouse AT GCT..



Parsimony

General idea ~ Occam’s Razor: If change is
rare, prefer explanations requiring few changes

Human A T
Chimp AT
Gorilla A T|G
Rat ATIG
Mouse A T |G

AT ..
AT ..
AG..
CG..
CT ..

0 changes



Parsimony

General idea ~ Occam’s Razor: If change is
rare, prefer explanations requiring few changes

Human AT G
Chimp A TG
Gorilla AT G
Rat ATG
Mouse AT G

T ..
T ..
G..
G..
T ..

A 1 change

A
A>A\
C

O 0O »



Parsimony

General idea ~ Occam’s Razor: If change is
rare, prefer explanations requiring few changes

T T 2 changes

T>/T\

. G G/T
G/
T7°G/T

Human AT G A
Chimp AT GA
Gorilla AT GA
Rat ATGC
Mouse AT G C

H o0 o 1 ]



Likelihood

Given a statistical model of evolutionary change,
prefer the explanation of maximum likelihood

Human AT GA T ..
Chimp ATGAT..
Gorilla AT GAG..
Rat AT GCG..
Mouse AT GCT..




Sankoff & Rousseau, ‘75

P (s) = best parsimony score of subtree rooted at
node u, assuming u is labeled by character s
A C G T




Sankoff-Rousseau Recurrence

P (s) = best parsimony score of subtree rooted at
node u, assuming u is labeled by character s

For leaf u:

P B if u i1s a leaf labeled s
u(s) = oo if u is a leaf not labeled s

For internal node u:

P,(s) = Z te{ArflCi',nG,T} cost(s,t) + P,(t)
'UEChlld(u)

Time: O(alphabet? x tree size)



So, Parsimony easy;
What about Likelihood!?

Straightforward generalization of “simple”
formula for 2-leaf tree

H _12 w, P(t,a, — x)P(t,,a, — x_)

is infeasible, since you need to consider all
(exponentially many) labelings of non-leaf
nodes. Fortunately, there’s a better way...



Felsenstein Recurrence

L (s | ©) = Likelihood of subtree rooted at node u,
assuming u is labeled by character s, given O
For Leaf u:

Lu(s|0) = 1 if u is a leaf labeled s
u(s | o 0 if u is a leaf not labeled s
For Internal node u:

L,(s|0) =

H Z P(s — t | length(u,v),0) - L,(t | )

vechild(v) te{A,C,G,T}



Another Application:
RNA folding

Vol. 15 no. 6 1999
Pages 446-454

RNA secondary structure prediction using
stochastic context-free grammars and
evolutionary history

B. Knudsen and J. Hein

Nucleic Acids Research, 2003, Vol. 31, No. 13 3423-3428
DOI: 10.1093/nar/gkg614

Pfold: RNA secondary structure prediction using
stochastic context-free grammars

Bjarne Knudsen® and Jotun Hein'



Using Evolution for RNA Folding

Assume you have
|. Training set of trusted RNA alignments
build evo model for unpaired columns
build evo model for paired columns

2. Alignment (& tree) for some RNAs presumed to
have an (unknown) common structure

look at every col pair - better fit to
paired model or 2 indp unpaired models!?
(Alternative to mutual information, using evo)



Training Data

Trusted alignments of 1968 tRNAs + 305 LSU rRNAs

Table 1. Base frequencies, showing nearly equal overall distribution of
bases, with a slight underrepresentation of Cs. Stems have high GC/CG
base pair frequencies, while loops have low content of Cs and Gs. The
lowest row shows the distribution of bases between loops and stems

Stem Loop Overall

AU/UA 35.6% A 36.4% A 26.8%

GC/CG 53.4% C 15.1% C 21.4%

UG/GU 9.8% G 21.2% G 26.7%

Other 1.2% U 27.3% U 25.1%
Total: 52.6% Total: 47.4%




Rate Matrix (Unpaired)

Table 2. The entries, ryy, for the loop rate matrix. Transitions are more
frequent than transversions

X\Y A C G U
A -0.75 0.16 0.32 0.26
C 0.40 ~1.57 0.24 0.93
G 0.55 0.17 ~0.96 0.24

U 0.35 0.51 0.19 —-1.05




Rate Matrix (Paired)

Table 3. Some of the entries for the stem rate matrix. Only rates between

the six most frequent base pairs are shown

X\Y AU UA GC CG UG GU
AU -1.16 0.18 0.50 0.12 0.02 0.27
UA 0.18 -1.16 0.12 0.50 0.27 0.02
GC 0.33 0.08 —0.82 0.13 0.02 0.23
CG 0.08 0.33 0.13 —0.82 0.23 0.02
UG 0.08 1.00 0.10 1.26 -2.56 0.04
GU 1.00 0.08 1.26 0.10 0.04 -2.56




What about Gaps!?

option |: evo model for them
- hard & slow

¢

option 2: treat “-” as a 5th character
- they don’t “evolve” quite like others

¢

option 3: treat “-” as unknown

- dlttO Seq 1 CGAC- - - - - AGCUGAGUGUGACUUUAGAAU
Seq 2 UGACGGUCUAGCUGACUGAUACUUCAGAGU
Seq 3 CGAC- - - - - AGCUGAAUGAGACUUCAGAAU

- end UP P&If’lﬂg’ Structure ... (((((..... )))))

H (o)
(drop if < 75%) Seq 1 CGAC- - - - - AGCUGAGUGUGACUUUAGAAU
Seq 2 UGACGGUCUAGCUGACUGAUACUUCAGAGU
+ easy Seq 3 CGAC- - - - - AGCUGAAUGAGACUUCAGAAU

Structure ........... ((((

)))) .-



Which Tree!?

KH-99 : try to find MLE tree (using SCFG et al.)

good but slow
KH-03 : est tree without structure
average unpaired & (marginalized) paired rates
calc pairwise distances between seqs
tree topology from “neighbor joining”
MLE tree branch lengths



Synopsis of last lecture

Based on simplifying assumptions (stationarity,
independence, Markov, reversible), there are simple
sequence-evolution models with a modest nhumber
of parameters giving, e.g., Pr(G—=T | |.5 myr), ...

It can model base-pairing in RNA, too

Felsenstein allows ML estimation of probabilities,
branch lengths, even trees,... in this model.
(Somewhat like “parsimony” algorithm, but better.)

Goal: Use all this for inference of RNA 2ary struct



Phylogeny vs Mutual Information

CCGUAGAUUA
CCGUAGAAUU
CCGUAGAUUA
CGGUACAAUU
CGGUACAUUA
CGGUACAAUU

Ml = | bit in both cases, but green pair is more
compelling evidence of interaction: 3 events, not |



The Glue: S — LS—LLLLLLLS - LLLLLLLL
— SsLsssss — ssdFdsssss
An SC FG — ssdddFdddsssss
— ssdddLSdddsssss
—  ssdddLLLLdddsssss
S—=LS | L —  ssdddssssdddsssss
L —s dFd
F—LS |dFd | " <58
d-d
d-d
SSd“dSSSSS

¢) F = dFd -y ddFdd — ddLSdd
— ddLLdd — ddLsdd — dddFdsdd



Full SCFG

S —=LS (0.868534) L (0.131466)
L —=s  (0.894603*p(s)) |dFd (0.105397*p(dd))
F—LS (0.212360) dFd (0.787640%p (dd))

Where p(s) & p(dd) are the probabilities of the
single/paired alignment columns s/dd as calculated
by the Felsenstein algorithm based on the fixed

evolutionary model and the given tree topology and
branch lengths.




What SCFG Gives

“Prior” probabilities for

fraction paired vs unpaired
lengths of each

frequency of bulges in stems
etc., and

Inherits column probabilities from evo model



Cocke-Kasami-Younger for CFG

Suppose all rules of form A -=BC or A —a

(by mechanical grammar transform, or use orig grammar & mechanically
transform alg below...)

Given x =x;...x,, want M;; ={ A [ A = x,,..x; }

For j=2 ton A
Mj-1Lil = {A | A = x; is a rule) g (A)
for i =j-1 down to |
M[ij] = U < <; M[i,k] ® M[k,]] ® ©

Where X® Y={A|A —=BC,BEX,andCEY}
i+1 K k+1 |



The “Inside” Algorithm for SCFG

(analogous to HMM “forward” alg)

Just like CKY, but instead of just recording
possibility of A in M[i,j], record its probability:
For each A, do sum instead of union, over all

possible k and all possible A —BC rules, of
products of their respective probabilities.

Result: for each i, j, A, have Pr(A — x,;...x;)

(There’s also an “outside” alg, analogous to backward...)



The “Viterbi” algorithm for SCFGs

Just like inside, but use max instead of sum.



So what'’s the structure?

The usual dynamic programming traceback:

Starting from S in upper right corner of
matrix, find which k and which S — BC gave

max probability, then (recursively) find where that B
and that C came from...

(Really, you want to do it with the F — dFd

grammar, and where those rules are used tells you
where the base pairs are.)



Results & Validation
KH-99: 4 bacterial RNAse P, 340-380 nt

3: Pseudomonas florescens

1: Klebsiella pneumoniae

AN

2: Serratia marscens

0.1 uni'(sI

4: Thiobacillus ferrooxidans

Fig. 2. The phylogenetic tree relating the four analysed sequences,
as calculated using the ML estimation described above. The length
units correspond to the rate matrices of the model.



Good
overall % Corgg,

structure
prediction
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pheumoniae
RNAse P

40 280




Good Overall Structure Prediction
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Fig. 3. The alignment of the four RNase P RNA sequences. The predicted structure, using all four sequences, 1s denoted p. The structure fro
the database 1s denoted s, with square brackets denoting parts of pseudoknots. The square brackets used here match the structure descriptic
in the database. The curly brackets denote positions where the structure differs: the sequences that have a non-standard pair in these positios
have loop regions or bulges, the rest have pairs.



Not bad, even with only one seq

Table 7. Accuracy table, showing comparisons of single sequence
predictions using the method described in this paper and MFOLD Version
3.0, by Zuker (1989) and Walter ef al. (1994). Predictions of secondary
structures were made on single sequences, which 1s the only possibility
using MFOLD. The average results are comparable

Sequence SCFG method MFOLD
Seq 1 57.7% 67.1%
Seq 2 48 2% 54.0%
Seq 3 41.2% 35.6%
Seq 4 46.2% 50.3%

Average 48.3% 531.7%




More
sequences
help

So do phylogeny

and a good
alignment

Accuracy plot
100% T I

......................................

90% -

80%

70%

60%

50%

40% 1 .
1 2 3 4

Number of sequences

Fig. 4. A comparison of results with and without phylogeny.
Diamonds (< ) denote the curve for predictions with phylogeny.
while boxes ([J) denote the one without. Crosses ( X ) denote results
using CLUSTAL W alignments and phylogeny estimation. The
dotted line at 94% represents the maximum possible prediction
accuracy with regard to the pseudoknots.



Structural alignment

No. of sequences | 2 3 4
Min result 41.2% 65.2% 73.9% 79.2%
Max result 57.7% 82.1% 79.6% 79.2%
Average 48.3% 73.6% 77.8% 79.2%
CLUSTAL W alignment
No. of sequences | 2 3 4
Min result 41.2% 54.9% 60.1% 73.8%
Max result 57.7% 69.1% 76.9% 73.8%
Average 48.3% 64.4% 68.5% 73.8%
Structural alignment, no phylogeny
No. of sequences 1 2 3 4
Min result 41.2% 59.9% 67.7% 76.2%
Max result 57.7% 76.6% 76.6% 76.2%
Average 48.3% 68.9% 72.2% 76.2%



Results & Validation
KH-03

Test Set Sequences

A: 9 tmRNAs act.act., hae.inf., kle.pne., pas.mul., sal.par., sal.typ., she.put., vib.cho.,
(363.8) yer.pes.

B: |3 bacterial bac.alc., bac.bre., bac.cer., bac.cir., bac.mac., bac.meg., bac.pol., bac.pum,,

SRP RNAs (270.5) bac.sph., bac.ste., bac.thu., bre.bre., clo.per.

C: 10 eukaryotic ory.sat., tri.ae-a, tri.ae-b, zea.ma-a, zea.ma-b, zea.ma-c, zea.ma-d, zea.ma-

SRP RNAs (300.9) e, zea.ma-f, zea.ma-h

D: 51 eukaryotic ara.th-a, ara.th-b, cae.el-a, cae.el-b, cae.el-c, cae.el-d, can.spe., cin.hyb.,
SRP RNAs (297.4) dro.mel., fug.rub., hom.sa-a, hom.sa-b, hom.sa-c, hum.ja-a, hum.ja-b,

hum.lu-a, hum.lu-b, hum.lu-c, hum.lu-d, lep.col., lyc.es-a, lyc.es-b, lyc.es-c,
lyc.es-e, lyc.es-f, lyc.es-g, lyc.es-h, lyc.es-i, lyc.es-j, lyc.es-k, lyc.es-m,
lyc.es-n, lyc.es-o, ory.sat., rat.rat., sch.pom., tet.ros., tet.the., tri.ae-a,
tri.ae-b, try.br-a, try.br-b, xen.lae., yar.li-a, yar.li-b, zea.ma-a, zea.ma-b,
zea.ma-c, zea.ma-d, zea.ma-e, zea.ma-f




Test set D
100% M—T—T—T—T—T T 1

90% |- -
80%
70%
60%
50%

40%
0.0 02 04 06 08 1.0 1.2 1.4 16

Distance

Accuracy

Figure 7. Accuracy as a function of pairwise distance between two sequences
being analysed. As in Figure 6, crosses are from results using ‘correct’ align-
ments, while boxes are from ClustalW alignments. The pairs were grouped
according to their Jukes—Cantor distances, in the intervals [0:0.2), [0.2:0.4),
[0.4:0.6) etc. The points represent average results for 50 random sequence
combinations from a specific range of distances. The x-value of a point is
the average of the 50 distances.



Accuracy

100%
90%
80%
70%
60%

)
50%

40%

Test set A

| | | |

2 3 4 5 6
Number of sequences

Figure 6. Accuracy vs number of
sequences used in the prediction.
Crosses: ‘correct’ alignments,

boxes: ClustalW alignments.

Each point: average results for either all
possible combinations or 50 random
combinations, whichever is the lower.

Test set B

| | | |

2 3 4 5 6
Number of sequences

Test set C

| | | |

1

2 3 4 5 6
Number of sequences



Course Wrap Up



Course Project Presentations

Wednesday, 12/13, 1:00-2:30
CSE 674

Everyone’s invited



“High-Throughput

lr igh GC)
BioTech”
Sensors
DNA Sequencing TTGBQCBETHHTCHTGlSBTCHTHGCTBIIQTTECTBTGTlgBHHHTTBTTﬁlgaE[
Microarrays/Gene expression : w M f ” !
i Ul Wy Vi H\ﬂ e ]\ i
Mass Spectrometry/Proteomics ATIT L]

Protein/protein & DNA/protein interaction

Controls AT
Cloning ' R AN v
Gene knock out/knock in ; X
RNAi o

Floods of data

“Grand Challenge” problems

‘+Proteobacteria

p-Proteobacteria
o-Proteobacteria

e-Proteobacteria



CS/Math/Stats Points of Contact

Scientific visualization
Gene expression patterns
Databases
Integration of disparate, overlapping data sources
Distributed genome annotation in face of shifting underlying coordinates

Al/NLP/Text Mining

Information extraction from journal texts with inconsistent nomenclature,
indirect interactions, incomplete/inaccurate models,...

Machine learning

System level synthesis of cell behavior from low-level heterogeneous data (DNA
sequence, gene expression, protein interaction, mass spec,

Algorithms



Frontiers & Opportunities

New data:

Proteomics, SNP, arrays CGH, comparative sequence
information, methylation, chromatin structure, ncRNA,
interactome

New methods:
graphical models? rigorous filtering?
Data integration

many, complex, noisy sources

Systems Biology



Frontiers & Opportunities

Open Problems:
splicing, alternative splicing
multiple sequence alignment (genome scale, w/ RNA etc.)
protein & RNA structure
interaction modeling
network models
RNA trafficing
ncRNA discovery



Exciting Times

Lots to do
Various skills needed

| hope I've given you a taste of it



Thanks!



