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MLE and EM

Review of Maximum Likelihood Estimators

MLE is one of many approaches to parameter estimation. The likelihood of independent
observations is expressed as a function of the unknown parameter. Then the value of the
parameter that maximizes the likelihood of the observed data is solved for. This is typically
done by taking the derivative of the likelihood function (or log of the likelihood function) with
respect to the unknown parameter, setting that equal to zero, and solving for the parameter.

Example 1 - Coin Flips

Take n coin flips, x1, x2, . . . , xn. The number of heads and tails are, n0 and n1, respectively.
θ is the probability of getting heads. That makes the probability of tails 1− θ. This example
shows how to estimate θ using data from the n coin flips and maximum likelihood estimation.
Since each flip is independent, we can write the likelihood of the n coin flips as

L(x1, x2, . . . , xn|θ) = (1− θ)n0θn1

log L(x1, x2, . . . , xn|θ) = n0 log (1− θ) + n1 log θ

∂

∂θ
log L(x1, x2, . . . , xn|θ) =

−n0

1− θ
+

n1

θ

To find the max of the original likelihood function, we set the derivative equal to zero and
solve for θ. We call this estimated parameter θ̂.

0 =
−n0

1− θ
+

n1

θ
n0θ = n1 − n1θ

(n0 + n1)θ = n1

θ =
n1

(n0 + n1)

θ̂ =
n1

n

It is also important to check that this is not a minimum of the likelihood function and that the
function maximum is not actually on the boundaries. In this case, this is the true maximum.
This makes intuitive sense. The θ (probability of getting heads) that maximizes the likelihood
of seeing this particular data is the number times heads came up over the total number of
flips.

Example 2 - Normal with Known Variance

Example 2 is a from a continuous distribution, specifically the normal distribution. This time
the xi’s are assumed to be chosen from normally distributed data with σ2 = 1 and µ unknown.
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The estimate for µ, θ̂, is found similarly to example 1:

L(x1, x2, . . . , xn|θ) =
n∏

i=1

1√
2π

e−(xi−θ)2/2

log L(x1, x2, . . . , xn|θ) =
n∑

i=1

−1

2
ln 2π − (xi − θ)2

2

∂

∂θ
log L(x1, x2, . . . , xn|θ) =

n∑
i=1

(xi − θ)

To find the theta that maximizes the first equation, we set the derivative equal to zero and
solve.

n∑
i=1

(xi − θ) = 0

n∑
i=1

xi − nθ = 0

θ̂ =
n∑

i=1

xi/n

θ̂ = x̄

Again, it must be verified that this isn’t a minimum and that the likelihood isn’t higher on
the boundaries. In this case this is the maximum. This tells us that the estimation for µ that
maximizes the likelihood of seeing this data is the sample mean.

Example 3 - Normal with Both Parameters Unknown

Consider the xi’s drawn from a normal distribution with both µ and σ2 both unknown. This
time we have to estimate both parameters. θ1 is the estimate of the mean and θ2 is the
estimate of the variance. We can go through the same steps as before:

L(x1, x2, . . . , xn|θ1, θ2) =
n∏

i=1

1√
2πθ2

e−(xi−θ1)2/2θ2

log L(x1, x2, . . . , xn|θ1, θ2) =
n∑

i=1

−1

2
ln 2πθ2 −

(xi − θ1)
2

2θ2

∂

∂θ1

log L(x1, x2, . . . , xn|θ1, θ2) =
n∑

i=1

(xi − θ1)

θ2
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We can set the derivative with respect to θ1 equal to zero and solve for θ1. The result is the
same as in example 2:

n∑
i=1

(xi − θ1)

θ2

= 0

n∑
i=1

xi − nθ1 = 0

θ̂1 =
n∑

i=1

xi/n

θ̂1 = x̄

This result is the same as in example 2. We can use this estimation to find the estimate for
the variance, θ2.

L(x1, x2, . . . , xn|θ1, θ2) =
n∏

i=1

1√
2πθ2

e−(xi−θ1)2/2θ2

log L(x1, x2, . . . , xn|θ1, θ2) =
n∑

i=1

−1

2
ln 2πθ2 −

(xi − θ1)
2

2θ2

∂

∂θ2

log L(x1, x2, . . . , xn|θ1, θ2) =
n∑

i=1

−1

2

2π

2πθ2

+
(xi − θ1)

2

2θ2
2

Setting equal to zero and solving for θ2 gives:

θ̂2 =
n∑

i=1

(xi − θ̂1)
2/n = s̄2

This is a consistent estimate of the population variance, i.e., in the limit as n grows it equals
the population variance. However, this estimate is biased. The unbiased estimate is:

θ̂2 =
n∑

i=1

(xi − θ̂1)
2

n− 1

(Why does it happen? Think about n = 2. θ̂1 is exactly in the middle of the two sample points,
whereas the population mean is unlikely to be (probability 0 in fact). This does not introduce
bias in the mean estimate (it’s too large as often as it’s too small), but does systematically
underestimate the variance.) The moral of the story is that MLE is a good idea, but it does
not always perfectly estimate the true population parameters.

Expectation Maximization

The expectation maximization algorithm is commonly used when there is hidden data. For
example, suppose samples are being drawn from a mixture of two or more different distribu-
tions, but the specification of which distribution is being sampled at each point is hidden. If
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the data is believed to be from several distributions, then there are many more parameters.
Each distribution has a mean, each distribution has a variance, and there are new parameters
that relate the distributions called mixing parameters.

A typical example of this type of problem is a sample of heights of people. The female
and male heights sampled come from different distributions. If we had thought to record
sex along with height, the data would have a simple form and we could separately estimate
the parameters of the two groups. But if sex is hidden, there may be a cluster of data
points around the average female height and a cluster of data points around the average male
height, and the best we can hope to do is jointly estimate the parameters somehow. For this
example, there are two means µ1 and µ2. There are two variances σ2

1 and σ2
2. The mixing

parameters(proportion of males/females in the sample) are τ1 and τ2 = 1− τ1. The PDF’s are
f(x|µ1, σ

2
1) and f(x|µ2, σ

2
2). Then the likelihood function becomes:

L(x1, x2, . . . , xn|µ1, µ2, σ
2
1, σ

2
2, τ1, τ2) =

n∏
i=1

2∑
j=1

τjf(xi|µj, σ
2
j )

There is no closed form solution for finding the set of parameters (θ) which maximize L.
The likelihood surface is complex. There are multiple maxima, which arise because the group
labels can be switched to get the same solution. There are also local maxima, which arise
from different grouping of the data.

These problems wouldn’t arise if the hidden data was known. That is, if there was a
formula for separating the data into the correct groups. These are known as the zij’s. zij = 1
if xi is drawn from distribution fj, and zij = 0 otherwise. There is somewhat of a chicken vs.
egg problem with zij and θ. If the zij were known, then θ could be estimated, and if θ was
known, zij could be estimated. Since we know neither, we iterate through two steps (E and
M), alternately estimating z’s and θ’s.

Classification EM

A simple version is to rigidly split the data in half (or into n groups) based on the estimated
zij—if the probability that zij = 1 is greater (less) than 1/2, then assume it is 1 (0, resp.).
Then recalculate θ based on that partition of data. Then recalculate the zij based on the new
θ. Then recalculate θ assuming the newest zij. And on and on.

Full EM

The xi’s are known. θ, the set of parameters, is unknown. The goal is to find the θ which
maximizes the hidden data likelihood, L(x1, x2, . . . , xn|θ). This would be easy if the zij’s were
known. Then we would have L(x1, x2, . . . , xn, z11, z12, . . . , zn2|θ), the complete data likelihood.
However, the zij’s are now known, so instead maximize the expected likelihood of the known
data: E(L(x1, x2, . . . , xn, z11, z12, . . . , zn2|θ)), where expectation is over the zij’s, the hidden
data.

The E-Step

Assume θ is known and fixed.
A: the event that xi was drawn from f1.
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B: the event that xi was drawn from f2.
D: the observed datum xi.
The expected value of zi1 is P (A|D), the probability of xi being from f1 given the observed

xi. P (A|D) = P (D|A)P (A)
P (D)

(Bayes’ Rule).
From the law of total probability,

P (D) = P (D|A)P (A) + P (D|B)P (B)

P (D) = f1(xi|θ1)τ1 + f2(xi|θ2)τ2

This is repeated for all xi.
The likelihood function for each xi is L(xi, zij|θ) = τ1f1(xi|θ) if zi1 = 1, and L(xi, zij|θ) =

τ2f2(xi|θ) otherwise. To get rid of if statement in the function, exploiting the fact that the zij

are 0/1 indicators, the likelihood function can be written as (for x1):

L(x1, z1j|θ) = z11τ1f1(x1|θ) + z12τ2f2(x1|θ)

Or:
L(x1, z1j|θ) = (τ1f1(x1|θ))z11(τ2f2(x1|θ))z12

The later form is more convenient, since we’re about to take a log.

The M-Step

For simplicity, σ1 and σ2 are assumed to be σ. Also, τ1 and τ2 are assumed to be τ = 0.5.
Then we have a likelihood function in terms of a vector x and a vector z.

L(x, z|θ) =
n∏

i=1

τ√
2πσ2

exp(−
2∑

j=1

zij
(xi − µj)

2

2σ2
)

E(log L(x, z|θ)) = E

[
n∑

i=1

(
log τ − 1

2
log 2πσ2 −

2∑
j=1

zij
(xi − µj)

2

2σ2

)]

=
n∑

i=1

(
log τ − 1

2
log 2πσ2 −

2∑
j=1

E[zij]
(xi − µj)

2

2σ2

)

θ is µj in this case. This parameter is found as before, using E[zij] found in the E-Step. The
result is µj =

∑n
i=1 E[zij]xi/

∑n
i=1 E[zij]. This is an average, weighted by the subpopulation

probability.

EM Summary

EM is fundamentally an MLE problem. E(z) is estimated given θ, the E-Step. Then θ is
estimated by maximizing E(likelihood) given E(z), the M-Step. Then the steps are repeated.

EM may converge to a local, not global, max. However, it is still an effective method and
widely used.
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