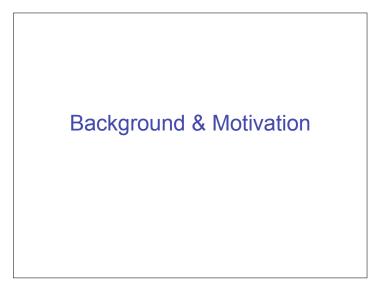


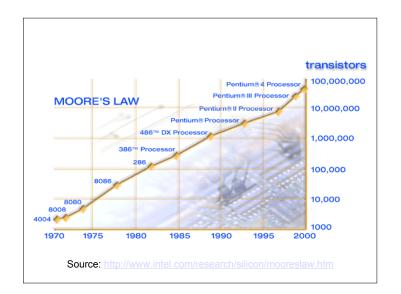
He who asks is a fool for five minutes, but he who does not ask remains a fool forever.

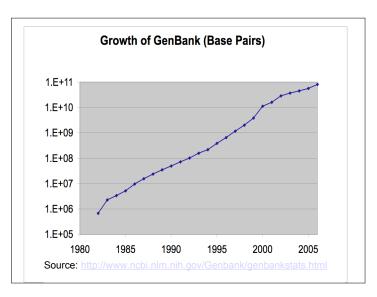
-- Chinese Proverb

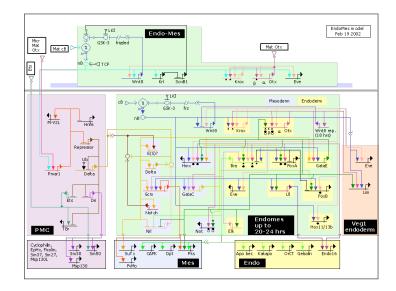
Today

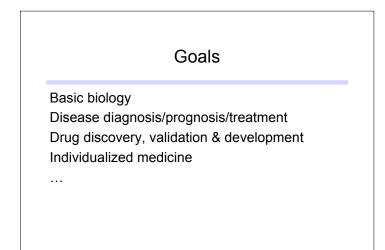
Admin

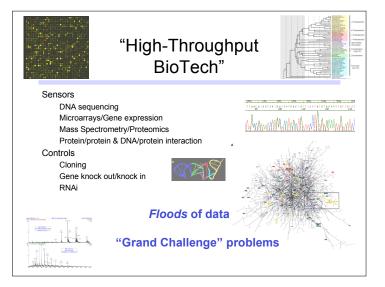

Why Comp Bio?


The world's shortest Intro. to Mol. Bio.

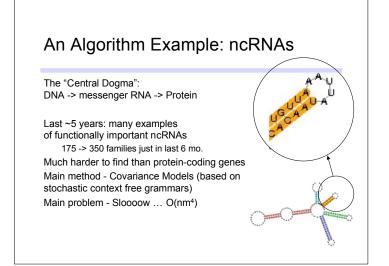

Admin Stuff


Reading In class discussion Lecture scribes Homeworks reading paper exercises programming Project No exams





The Human Genome Project											
1	gageceggee	cgggggacgg	gcggcgggat	agcgggaccc	cggcgcggcg	gtgcgcttc					
61	gggcgcagcg	gcggccgcag	accgagcccc	gggcgcggca	agaggcggcg	ggagccggt					
121	gcggctcggc	atcatgcgtc	gagggcgtct	gctggagatc	gccctgggat	ttaccgtgc					
181	tttagcgtcc	tacacgagcc	atggggcgga	cgccaatttg	gaggctggga	acgtgaagg					
241	aaccagagcc	agtcgggcca	agagaagagg	cggtggagga	cacgacgcgc	ttaaaggac					
301	caatgtctgt	ggatcacgtt	ataatgctta	ctgttgccct	ggatggaaaa	ccttacctg					
361	cggaaatcag	tgtattgtcc	ccatttgccg	gcattcctgt	ggggatggat	tttgttcga					
121	gccaaatatg	tgcacttgcc	catctggtca	gatagctcct	tcctgtggct	ccagatcca					
181	acaacactgc	aatattcgct	gtatgaatgg	aggtagctgc	agtgacgatc	actgtctat					
541	ccagaaagga	tacataggga	ctcactgtgg	acaacctgtt	tgtgaaagtg	gctgtctca					
501	tggaggaagg	tgtgtggccc	caaatcgatg	tgcatgcact	tacggattta	ctggacccc					
561	gtgtgaaaga	gattacagga	caggcccatg	ttttactgtg	atcagcaacc	agatgtgcc					
721	gggacaactc	agcgggattg	tctgcacaaa	acagetetge	tgtgccacag	tcggccgag					
781	ctggggccac	ccctgtgaga	tgtgtcctgc	ccagcctcac	ccctgccgcc	gtggcttca					
341	tccaaatatc	cgcacgggag	cttgtcaaga	tgtggatgaa	tgccaggcca	tccccgggc					
901	ctgtcaggga	ggaaattgca	ttaatactgt	tgggtctttt	gagtgcaaat	gccctgctg					
961	acacaaactt	aatgaagtgt	cacaaaaatg	tgaagatatt	gatgaatgca	gcaccattc					
L021	1										


The human genome is "finished"... Even if it were, that's only the beginning Explosive growth in biological data is revolutionizing biology & medicine

> "All pre-genomic lab techniques are obsolete"

(and computation and mathematics are crucial to post-genomic analysis)

CS Points of Contact & Opportunities

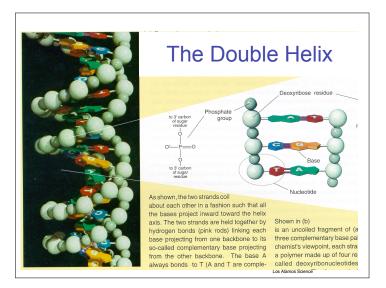
Scientific visualization Gene expression patterns Databases Integration of disparate, overlapping data sources Distributed genome annotation in face of shifting underlying genomic coordinates AI/NLP/Text Mining Information extraction from journal texts with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models,... Machine learning System level synthesis of cell behavior from low-level heterogeneous data (DNA sequence, gene expression, protein interaction, mass spec,...) ... Algorithms

"Rigorous Filtering" - Z. Weinberg Convert CM to HMM (AKA: stochastic CFG to stochastic form grammar) Do it so HMM score alway 15 CM store Optimize for most as passive finited subject to constraint that score bound maintained A large convex option with the subject. Filter genome set of the store of the

Results

Typically 200-fold speedup or more Finding dozens to hundreds of new ncRNA genes in many families Has enabled discovery of many new families

Newer, more elaborate techniques pulling in key secondary structure features for better searching (uses automata theory, dynamic programming, Dijkstra, more optimization stuff....) More Admin


Course Focus & Goals

Sequence analysis, maybe some microarrays Algorithms for alignment, search, & discovery Specific sequences, general types ("genes", etc.) Single sequence and comparative analysis Techniques: HMMs, EM, MLE, Gibbs, Viterbi... Enough bio to motivate these problems, including very light intro to modern biotech supporting them Math/stats/cs underpinnings thereof Applied to real data

A VERY Quick Intro To Molecular Biology

The Genome

The hereditary info present in every cell
DNA molecule -- a long sequence of *nucleotides* (A, C, T, G)
Human genome -- about 3 x 10⁹ nucleotides
The genome project -- extract & interpret genomic information, apply to genetics of disease, better understand evolution, ...

DNA

Discovered 1869 Role as carrier of genetic information - much later The Double Helix - Watson & Crick 1953 Complementarity $A \longleftrightarrow T \quad C \longleftrightarrow G$

Visualizations: http://www.rcsb.org/pdb/explore.do?structureId=123D

Genetics - the study of heredity

A *gene* -- classically, an abstract heritable attribute existing in variant forms (*alleles*) *Genotype* vs *phenotype* Mendel Each individual two copies of each gene Each parent contributes one (randomly) Independent assortment

Cells

Chemicals inside a sac - a fatty layer called the plasma membrane

Prokaryotes (bacteria, archaea) - little recognizable substructure

Eukaryotes (all multicellular organisms, and many single celled ones, like yeast) - genetic material in nucleus, other organelles for other specialized functions

Chromosomes

 pair of (complementary) DNA molecules (+ protein wrapper)
 Most prokaryotes have just 1 chromosome Eukaryotes - all cells have same number of chromosomes, e.g. fruit flies 8, humans & bats 46, rhinoceros 84, ...

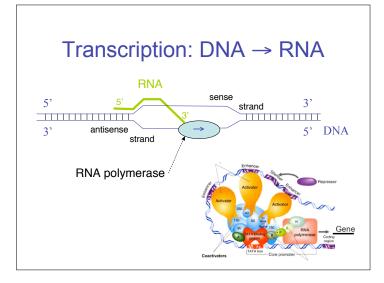
Mitosis/Meiosis

Most "higher" eukaryotes are *diploid* - have homologous pairs of chromosomes, one maternal, other paternal (exception: sex chromosomes)

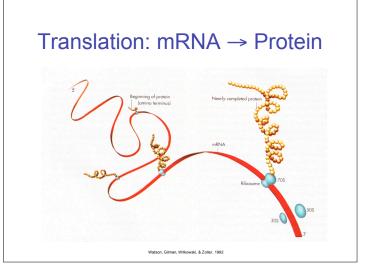
Mitosis - cell division, duplicate each chromosome, 1 copy to each daughter cell

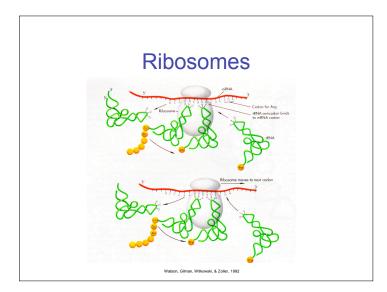
Meiosis - 2 divisions form 4 *haploid* gametes (egg/sperm)

Recombination/crossover -- exchange maternal/paternal segments


Proteins

Chain of amino acids, of 20 kinds Proteins:the major functional elements in cells Structural/mechanical Enzymes (catalyze chemical reactions) Receptors (for hormones, other signaling molecules, odorants,...) Transcription factors


3-D Structure is crucial: the protein folding problem


The "Central Dogma"

Genes encode proteins DNA transcribed into messenger RNA mRNA translated into proteins Triplet code (codons)

(2	odo	ns a	& Tł	ne G	36	er	netic Code
	Second Base							Ala : Alanine Arg : Arginine
		u	C	A	G	-		Asn : Asparagine
		Phe	Ser	Tyr	Cys	11		Asp : Asparagine
		Phe	Ser	Tyr	Cvs	U C		Cys : Cysteine
	U	Leu	Ser	Stop	Stop	Ā		GIn : Glutamine
		Leu	Ser	Stop	Trp	G	1	Glu : Glutamic acid
		Leu	Pro	His	Arg	Ŭ	1	Gly : Glycine
	с	Leu	Pro	His	Arg	U C		His : Histidine
Base	C	Leu	Pro	Gln	Arg	A G	Base	Ile : Isoleucine
Ba		Leu	Pro	Gln	Arg	G		Leu : Leucine
tt		lle	Thr	Asn	Ser	U	Third	Lys : Lysine
First	Α	lle	Thr	Asn	Ser	С	E	Met : Methionine
	~	lle	Thr	Lys	Arg	U C A G		Phe : Phenylalanine
		Met/Start		Lys	Arg			Pro : Proline
		Val	Ala	Asp	Gly	U		Ser : Serine
	G	Val	Ala	Asp	Gly	С		Thr : Threonine
	5	Val	Ala	Glu	Gly	U C A G		Trp : Tryptophane
		Val	Ala	Glu	Glv	10	1	Tyr : Tyrosine

Gene Structure

Transcribed 5' to 3'

Promoter region and transcription factor binding sites (usually) precede 5' end

Transcribed region includes 5' and 3' untranslated regions

In eukaryotes, most genes also include *introns*, spliced out before export from nucleus, hence before translation

Genome Sizes

	Base Pairs	Genes
Mycoplasma genitalium	580,073	483
MimiVirus	1,200,000	1,260
E. coli	4,639,221	4,290
Saccharomyces cerevisiae	12,495,682	5,726
Caenorhabditis elegans	95,500,000	19,820
Arabidopsis thaliana	115,409,949	25,498
Drosophila melanogaster	122,653,977	13,472
Humans	3.3 x 10 ⁹	~25,000

Genome Surprises

Humans have < 1/3 as many genes as expected
But perhaps more proteins than expected, due to alternative splicing, alt start, alt polyA
Protein-wise, all mammals are just about the same
But more individual variation than expected
And many more non-coding RNAs -- more than protein-coding genes, by some estimates
Many other non-coding regions are highly conserved, e.g., across all vertebrates
90% of DNA is transcribed (< 2% coding)
Complex, subtle "epigenetic" information

... and much more ...

Read one of the many intro surveys or books for much more info.

Homework #1 (partial)

Read Hunter's "bio for cs" primer; Find & read another Post a few sentences saying What you read (give me a link or citation) Critique it for your meeting your needs Who would it have been good for, if not you See class web for more details