

This week

- Sequence alignment
- More sequence alignment
- Weekly "bio" interlude DNA replication

Sequence Alignment

Part I Motivation, dynamic programming, global alignment

Sequence Alignment

- What
- Why

- A Simple Algorithm
- Complexity Analysis
- A better Algorithm: "Dynamic Programming"

Sequence Similarity: What

GGACCA

TACTAAG |:|:||: TCC-AAT

BL http://www.m Taxonomy Report	AST I cbi.nl	Dem m.nil	o Try it! n.gov/blast/ pick any pro e.g. hemogle insulin, expo
root	64 hits	16 orgs	
. Eukaryota	62 hits	14 orgs	[cellular organisms]
Fungi/Metazoa group	57 hits	11 orgs	
Bilateria	38 hits	7 orgs	[Metazoa; Eumetazoa]
Coelomata	36 hits	6 orgs	
Tetrapoda	26 hits	5 orgs	[;;; Vertebrata;;;; Sarcopterygii]
Eutheria	24 hits	4 orgs	[Amniota; Mammalia; Theria]
Homo sapiens	20 hits	1 orgs	[Primates;; Hominidae; Homo]
Murinae	3 hits	2 orgs	[Rodentia; Sciurognathi; Muridae]
Rattus norvegicus	2 hits	1 orgs	[Rattus]
Mus musculus	1 hits	1 orgs	[Mus]
Sus scrofa	1 hits	1 orgs	[Cetartiodactyla; Suina; Suidae; Sus]
Xenopus laevis	2 hits	1 orgs	[Amphibia;;;;;; Xenopodinae; Xenopus]
Drosophila melanogaster	10 hits	1 orgs	[Protostomia;;;; Drosophila;;;]
Caenorhabditis elegans	2 hits	1 orgs	<pre>[; Nematoda;;;;;; Caenorhabditis]</pre>
Ascomycota	19 hits	4 orgs	[Fungi]
Schizosaccharomyces pombe	10 hits	1 orgs	[;;;; Schizosaccharomyces]
Saccharomycetales	9 hits	3 orgs	[Saccharomycotina; Saccharomycetes]
Saccharomyces	8 hits	2 orgs	[Saccharomycetaceae]
Saccharomyces cerevisiae .	7 hits	1 orgs	
saccharomyces kluyveri	1 hits	1 orgs	
	1 hits	1 orgs	[mitosporic saccharomycetales;]
ALADIAOPSIS CHAILANA	2 11105	1 orgs	(viriapiundau)Didbbildcadau) j
Discontraction folging and	3 hits	∠ orgs	[HIVEDIALA]
riasmourum iaiciparum	2 hits	1 orgs	[naemosporida, riasmoulum]
roxoprasma gondii	1 hits	1 orgs	[cocciuia; mimerilua; Sarcocystidae;]
. synchecic construct	1 hits	1 orgs	[Viruses: deDNA viruses no PNA]

Sequence Alignment							
acbcdb acbcdb cadbd -cadb-d-							
Defn: An <i>alignment</i> of strings S, T is a pair of strings S', T' (with spaces) s.t. (1) S' = T' , and (S = "length of S") (2) removing all spaces leaves S, T							
	10						

Fibonacci Numbers

Optimal Substructure (In More Detail)

- Optimal alignment ends in 1 of 3 ways:
 - last chars of S & T aligned with each other
 - · last char of S aligned with space in T
 - last char of T aligned with space in S
 - (never align space with space; $\sigma(-,-)$ < 0)
- In each case, the rest of S & T should be optimally aligned to each other

21

Optimal Alignment in O(n²) via "Dynamic Programming"

- Input: S, T, |S| = n, |T| = m
- Output: value of optimal alignment

Easier to solve a "harder" problem:

V(i,j) = value of optimal alignment ofS[1], ..., S[i] with T[1], ..., T[j] for all $0 \le i \le n, 0 \le j \le m$.

Base Cases • V(i,0): first i chars of S all match spaces $V(i,0) = \sum_{k=1}^{i} \sigma(S[k], -)$ • V(0,j): first j chars of T all match spaces $V(0,j) = \sum_{k=1}^{j} \sigma(-,T[k])$

Mismatch = -1 Match = 2										
		j	0	1	2	3	4	5		
	i			С	а	d	b	d	←T	
	0		0	-1	-2	-3	-4	-5		
	1	а	-1	-1	1	0	-1	-2		
	2	С	-2	1	0	0	-1	-2		
	3	b	-3	0	0	-1	2	1		
	4	С	-4	-1	-1	-1	1	1		
	5	d	-5	-2	-2	1	0	3		
	6	b	-6	-3	-3	0	3	2		
		ŝ							27	

Finding Alignments: Trace Back											
	j 0 1 2 3 4 5										
	i			С	а	d	b	d	←T		
	0		0	-0	-2	-3	-4	-5			
	1	а	Ĵ,	-1	1	0	-1	-2			
	2	С	-2		0	0	-1	-2			
	3	b	-3	Ô,	0	-1	2	1			
	4	С	-4	-1	(-1)	-1	(Ť),	1			
	5	d	-5	-2	-2	1	0	3			
	6	b	-6	-3	-3	0	3	-2			
		ŝ						,		28	

Complexity Notes

- Time = O(mn), (value and alignment)
- Space = O(mn)
- Easy to get value in Time = O(mn) and Space = O(min(m,n))
- Possible to get value and alignment in Time = O(mn) and Space = O(min(m,n)) but tricky.

29

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Local Alignment: Motivations

- "Interesting" (evolutionarily conserved, functionally related) segments may be a small part of the whole
 - "Active site" of a protein
 - Scattered genes or exons amidst "junk", e.g. retroviral insertions, large deletions
 - Don't have whole sequence
- Global alignment might miss them if flanking junk outweighs similar regions

for all substrings A of S and B of T
 Align A & B via dynamic programming
 Retain pair with max value
end ;
Output the retained pair

Time: O(n²) choices for A, O(m²) for B, O(nm) for DP, so O(n³m³) total. [Best possible? Lots of redundant work...]

Scoring Local Alignments									
	j	0	1	2	3	4	5	6	
i			х	х	х	С	d	е	←T
0		0	0	0	0	0	0	0	
1	а	0							
2	b	0							
3	С	0							
4	х	0							
5	d	0							
6	е	0							
7	x	0							
	↑ S								38

Finding Local Alignments										
		j	0	1	2	3	4	5	6	
	i			х	x	x	С	d	е	←T
	0		0	0	0	0	0	0	0	
	1	а	0	0	0	0	0	0	0	
	2	b	0	0	0	0	0	0	0	
	3	С	0	0	0	0	2	1	0	
	4	x	0	2	2	2	- 1	1	0	
	5	d	0	1	1	1	1	3	2	
	6	е	0	0	0	0	0	2	5	
	7	x	0	2	2	2	1	1	4	
		↑ S								39

Notes	
Time and Space = O(mn) Space O(min(m,n)) possible with time O(mn), but finding alignment is trickier	
Local alignment: "Smith-Waterman" Global alignment: "Needleman-Wunsch"	
	40

Global Alignment with
Affine Gap PenaltiesV(i,j) = value of opt alignment of
<math>S[1], ..., S[i] with T[1], ..., T[j]G(i,j) = ..., s.t. last pair matches S[i] & T[j]F(i,j) = ..., s.t. last pair matches S[i] & -
E(i,j) = ..., s.t. last pair matches - & T[j]Time: O(mn) [calculate all, O(1) each]

