This week

CSE 527
Computational Biology
Autumn 2007

Lectures 2-3
Sequence Alignment;
DNA Replication

» Sequence alignment
* More sequence alignment
» Weekly “bio” interlude - DNA replication

Sequence Alignment

Sequence Alignment

Part |

Motivation, dynamic programming,
global alignment

- What

- Why

- A Simple Algorithm

- Complexity Analysis

- A better Algorithm:
“‘Dynamic Programming”

Sequence Similarity: What

GGACCA

TACTAAG

TCCAAT

Sequence Similarity: What

TACTAAG
I
TCC-AAT

Sequence Similarity: Why

- Most widely used comp. tools in biology

- New sequence always compared to
sequence data bases

Similar sequences often have similar
origin or function

- Recognizable similarity after 108 —10° yr

BLAST Demo Try it!

http://www.ncbi.nlm.nih.gov/blast/ pick any protein,
e.g. hemoglobin,
Taxonomy Report insuIin, exportin,...

64 hits 16 orgs

. Eukaryota .. 62 hits 14 orgs [cellular organisms]

. Fungi/Metazoa group .

57 hits 11 orgs

38 nits 7 orgs [Metazoa; Eumetazoa]
36 hits
..... o .. 26 hits
& 24 hits
20 hits
3 hits 2 orgs (Rodentia; Sciurognathi; Muridae]
2 nits 1 orgs [Rattus]
1hits 1 orgs (Mus]
....... . 1 nits 1 orgs [Cetartiodactyla; Suina; Suidae; Sus]
...... . . 2 nits Xenopodinae; Xenopus]
..... 10 hits Drosophil.
. c 2 nits Caenorhabditis]
19 hits
10 hits 1 orgs Schizosaccharomyces]
9 nits 3 orgs [Saccharomycotina; Saccharomycetes]
8 hits 2 orgs [Saccharomycetaceae]
7 nits 1 orgs
1hnits 1 orgs
1 hits 1 orgs [mitosporic Sacch
2 hits 1 orgs [Viridiplantae;
3 nits 2 orgs [Alveolata]
. Plasmodium falciparum 2 hits 1 orgs [Hae rida; Plasmodium]
. Toxoplasma gondi 1 hits]
. synthetic construct 1 hits 1 orgs [other; artificial sequence]

Tumnhasverie disease vi 1 nits 1 orgs [Viruses; dsDNA viruses, no RNA ..]

Terminology
(CS, not necessarily Bio)

- String: ordered list of letters TATAAG

- Prefix: consecutive letters from front
empty, T, TA, TAT, ...

. Suffix: ... from end
empty, G, AG, AAG, ...

- Substring: ... from ends or middle

Sequence Alignment

acbcdb ac——-bcdb
/ \ | | | |
cadbd —cadb-d-

Defn: An alignment of strings S, T is a
pair of strings S’, T (with spaces) s.t.
(1)|S’] = |T’|, and (IS| = “length of S”)
(2) removing all spaces leaves S, T

empty, TAT, AA, ...
- Subsequence: ordered, nonconsecutive
TT, AAA, TAG, ...
9
Mismatch = -1
Al- S . Match =2
1gnment COI‘ll’lg
acbcdb a ¢ - - b c¢c d b
cadbd - ¢ a d b - 4d -
-12 -1 -12 -1 2 -1
Value = 3*2 + 5*(-1) = +1

- The score of aligning (characters or
spaces) x &y is o(x,y).

- Value of an alignment SI3| o/(S'[i1,7'[i])
- An optimal alignment: one of max value

Optimal Alignment:
A Simple Algorithm

for all subseqs A of S, B of T s.t. |A| = |B| do
align A[i] with B[i], 1 =i < |A|
align all other chars to spaces

compute its value S=abcd A=cd
. T=wxyz B=xz
retain the max
-abc-d
end W-—XYyZ

output the retained alignment

Analysis

- Total time: =n

- Assume |S|=|T|=n
- Cost of evaluating one alignment: = n

- How many alignments are there: 2(2”)
pick n chars of S, T together n

say k of them are in S

match these k to the k unpicked chars of T

n 2n
>2" for n>3
n

- E.g., for n = 20, time is > 240 operations

Polynomial vs
Exponential Growth

1.x10°

5.x108

100 200 300 400

Asymptotic Analysis

- How does run time grow as a function of
problem size?
n? or 100 n?2+ 100 n + 100 vs 22"

- Defn: f(n) = O(g(n)) iff there is a constant ¢
s.t. [f(n)| = cg(n) for all sufficiently large n.
100 n2+ 100 n + 100 = O(n2) [e.g. ¢ =300, or 101]
n2= 0(22")
22nis not O(n?)

Big-O Example

f(n) = O(g(n)) =
O(g'(n))

Utility of Asymptotics

- “All things being equal,” smaller asymptotic
growth rate is better

- All things are never equal

- Even so, big-O bounds often let you quickly
pick most promising candidates among
competing algorithms

- Poly time algorithms often practical,
non-poly algorithms seldom are.
(Yes, there are exceptions.)

Fibonacci Numbers

Fibonacci, 11

int fib[n]; 5 .

_ ynamic
fib[0] = 1, Programming”
fib[1] = 1; Avoid repeated work by

im0 =" | tabulating solutions to
for(' 2; i<=n; |++){ repeated subproblems
fib[i] = fib[i-1] + fib[i-2]; -
Y Time = O(n)
return fib[n];

(in this case)

fib(n) { o :
. _ Imple recursion,
if (n <=1){ but many
return 1; repeated
}else { subproblems!!
return fib(n-1) + fib(n-2); =>
} Time = Q(1.61")
}
Candidate for Dynamic

Programming?

- Common Subproblems?

« Plausible: probably re-considering alignments of
various small substrings unless we're careful.

- (Both made rigorous below.)

20

Optimal Substructure
(In More Detail)

- Optimal alignment ends in 1 of 3 ways:
« last chars of S & T aligned with each other
- last char of S aligned with space in T

- last char of T aligned with space in S

 (never align space with space; o(—, —) <0)

- In each case, the rest of S & T should
be optimally aligned to each other

21

Optimal Alignment in O(n?)
via “Dynamic Programming”

< Input: S, T, [S]=n, |T|=m
- Output: value of optimal alignment

Easier to solve a “harder” problem:

V(i,j) = value of optimal alignment of
S[1], ..., S[i] with T[1], ..., T[j]
forallO<i=n,0=j=sm.

22

Base Cases

- V(i,0): first i chars of S all match spaces
V(i,0)= Y o(S[kl,-)

- V(0,j): first j chars of T all match spaces

V0.))= Y o(=TIk)

23

General Case

Opt align of S[1], ..., S[i] vs T[1], ..., T[il:

o SN [SE) [=
e R Ce)
Opt align of
T V(i-1,j-1)+ o(S[i],T[j])

V(i,j) = max {V(i-1,j) +o(S[i], -)¢,
V(ij1) +o(-, T[j])
forall 1si<n, 1= j=m.

24

26

A __\m/
non o)
[=
5 | i=Ne)
T o =
£5
L © o oW
==
<+ o ¥
Q ™ o O
—
o
m o o o
<
X 1C4 ~
S
© © AR «
— Ol O O O | <)
- O N| M| < ©
'4
2l ===
21l .3 |4 | =
S| B S = R =
3~ L = =
Hlzz >L=
ol 2z
c|l ©%5 % |
+ + + —
Ol = || =
| 232 - —
11..] L =
U S = >
Slsssg >
t ’J\I\
(4] >
— <
= g
Q Il —
— =
© = n
) =

28

T
|
.. o| © o - .m/w
9p]
.m .
m SR @
4
ol ™ - o
m.om 1 @.
= N RICEIS B
Ae
QO A
on & c@ OO ?
g
= CIORIE ©
a
o=
F ol o O | <)
—| o N ™ ©
A X
non —
5 !
£ 5
2 ® o| N~ LN
MM 1 1
bA. TN ™
Q of @ o~ o
e
o
m | o ol o ®
Q)
X C4 — | O Oﬂu
Sa
ol~|aw ©
ol o O | <)
—| o N ™ ©

Complexity Notes

- Time = O(mn), (value and alignment)

- Space = O(mn)

- Easy to get value in Time = O(mn) and
Space = O(min(m,n))

- Possible to get value and alignment in
Time = O(mn) and Space = O(min(m,n))
but tricky.

29

Sequence Alignment

Part Il
Local alignments & gaps

30

Variations

- Local Alignment

 Preceding gives global alignment, i.e. full
length of both strings;

« Might well miss strong similarity of part of
strings amidst dissimilar flanks

- Gap Penalties
+ 10 adjacent spaces cost 10 x one space?
- Many others

31

Local Alignment:Motivations

- “Interesting” (evolutionarily conserved,

functionally related) segments may be a small
part of the whole
+ “Active site” of a protein

- Scattered genes or exons amidst “junk”, e.g.
retroviral insertions, large deletions

- Don’t have whole sequence

- Global alignment might miss them if flanking

junk outweighs similar regions

32

Local Alignment

Optimal /ocal alignment of strings S & T:
Find substrings Aof Sand B of T
having max value global alignment

S = abcxdex A=cxde
T = xxxcde B=c-de value=5

33

The “Obvious” Local
Alignment Algorithm

for all substrings Aof Sand B of T
Align A & B via dynamic programming
Retain pair with max value

end ;

Output the retained pair

Time: O(n?) choices for A, O(m?) for B,
O(nm) for DP, so O(n*m?) total.
[Best possible? Lots of redundant work...]

34

Local Alignment in O(nm)
via Dynamic Programming

< Input: S, T, |S|=n, |[T|=m
- Output: value of optimal local alignment
Better to solve a “harder” problem
forallO<i=n,0<j=m:

V(i,j) = max value of opt (global)

alignment of a suffix of S[1], ..., S]i]
with a suffix of T[1], ..., T[j]

Report best i,

35

Base Cases

- Assume o(x,-) = 0, o(-x) = 0
- V(i,0): some suffix of first i chars of S; all
match spaces in T; best suffix is empty

V(i,0)=0
- V(0,j): similar
V(0,j)=0

36

General Case Recurrences

Scoring Local Alignments

Opt suffix align S[1], ..., S[i vs T[1], ..., TIjl:

[E—

j 0 1 2 3 4 5

N[O~ |WIN| = O
O OoOl0o|o|o|o| ol o

38

=X [0 [(X |[O|T| D

Notes

Opt align of
S V(i-Lj-1)+ o (S[LT[) s
Tt V(i-lj) +o(Sfi], -)| =
VD= M8 6j0) wo(- T [o
0 SIT
forall 1<i<n, l<j<m.
Finding Local Alignments
jp 0 1, 2, 3| 4 5 6
i X X X c d e| <T
0 0 0] o] o] 0] 0] o
1 a| 0] o of o o] of o
2 bl of of of (@ of of o
3 ¢c| o] of (OL o0 11 0
4 x| o] 2| 2 @&%& 11 o0
5 d|l o] 1] 1| 1] 1] @®L 2
6 | ol ol ol o]l o 2| (v
7 x| ol 2] 2] 2] 1] 1] 4
. »

- Time and Space = O(mn)
- Space O(min(m,n)) possible with time

O(mn), but finding alignment is trickier

- Local alignment: “Smith-Waterman”
- Global alignment: “Needleman-Wunsch”

40

10

Alignment With Gap Penalties

maximal run of spaces in S’ or T’
ab----c-d
a—ddddcbd

Motivations, e.qg.:

mutation might insert/delete several or
even many residues at once

matching cDNA (no introns) to genomic
DNA (exons and introns)

Some parts of proteins less critical

2gapsinS,1inT

41

Topoisomerase 1

A Protein Structure:
(Dihydrofolate Reductase)

Sequence Evolution

Nothing in Biology Makes Sense Except in the Light of
Evolution
Theodosius Dobzhansky, 1973

Changes happen at random
Deleterious/neutral/advantageous changes
unlikely/possibly/likely spread widely in a population
Changes are less likely to be tolerated in positions
involved in many/close interactions, e.g.
enzyme binding pocket
protein/protein interaction surface

44

11

Gap Penalties

- Score = f(gap length)
- Kinds, & best known alignment time

- general |V o(nd)
s

Global Alignment with
Affine Gap Penalties

V(i,j) = value of opt alignment of

S[1], ..., S[i] with T[1], ..., T[j]
G(i,j) =..., s.t. last pair matches S[i] & T[j]
F(i,j) = ..., s.t. last pair matches S[i] & —
E(i,j) = ..., s.t. last pair matches — & T[j]

Time: O(mn) [calculate all, O(1) each]

46

- convex O(n2log n)
- affine | O(mn)
Affine Gap Algorithm

Gap penalty = g + s*(gap length), g,s = 0
V(i,0)= E(i,0) = V(0,i) = F(0,i) = -g-i*s

V(i.j) = max(G(i,j), F(i.j), E(i.j))

G(i,j) = V(i-1,]-1) + o(S[i], T[i])

F(i,j) = max(F(i-1,j)-s|, V(i-1,j)-g-s

E(i,j) = max(E(i,j-1)-s, V(i,j-1)-g-s
old gap new gap

~

~"

47

Summary

- Functionally similar proteins/DNA often have
recognizably similar sequences even after eons of
divergent evolution

- Ability to find/compare/experiment with “same”
sequence in other organisms is a huge win

- Surprisingly simple scoring model works well in
practice: score each position separately & add,
possibly w/ fancier gap model like affine

- Simple “dynamic programming” algorithms can find
optimal alignments under these assumptions in poly
time (product of sequence lengths)

- This, and heuristic approximations to it like BLAST,
are workhorse tools in molecular biology

48

12

DNA Replication: Basics

Weekly Bio Interlude

DNA Replication

49

T 3 T
c | 5 3
i ACGAQ
0 T - %:,
3 5 | 3 5
A | A
G
G
T c A
c A

50

Issues & Complications, I

Issue 2: Rep Forks & Helices

1st ~10 nt's added are called the primer

- In simple model, DNA pol has 2 jobs: prime &
extend

- Priming is error-prone S

- So, specialized primase Prmase
does the priming; pol primer
specialized for fast, 3 5
accurate extension

- Still doesn’t solve the accuracy problem
(hint: primase makes an RNA primer)

51

- DNA polymerase synthesizes new

- “Replication Fork”: DNA double helix

is progressively unwound by a DNA
helicase, and both resulting single

%
! i,
strands are duplicated 9

strand 5’ -> 3’(reading its template
strand 3’ -> 5’)

- That means on one (the “leading”) \eaé\“g

strand, DNA pol is chasing/pushing 3
the replication fork

- But on the other “lagging” strand,

DNA pol is running away from it.

52

13

Issue 3: Fragments

Issue 4: Coord Lead/Lag

Lagging strand gets a series
of “Okazaki fragments” of
DNA (~200nt in eukaryotes)
following each primer

- The RNA primers

are later removed

by a nuclease and

DNA pol fills gaps (more
accurate than primase)
Fragments joined by ligase

3 i 5
primer
pol starts here

primer Okazaki primer

53

leading-strand template

\
\ newly synthesized strand
/
/ DNA polymerase on

*:X//f\\ (/[leading strand parental
\\)\ | *. DNA helix
U\ | o

single-strand DD @ = AR v DNA helicase

binding protein
-\ lagging-strand
2 \Q:X///\ template
RNA ~ "o \
primer /’L‘ /\
DNA polymerase / \‘
on lagging strand /
Okazaki (just finishing an ger‘ﬁlr:(esized ”\
fragment Okazaki fragment) !
strand

Alberts et al., Mol. Biol. of the Cell, 3rd ed, p258

54

Issue 5: Twirls & Tangles

Issue 6: Proofreading

Unwinding helix (~10 nucleotides
per turn) would cause stress.
Topoisomerase | cuts DNA
backbone on one strand,
allowing it to spin about the
remaining bond, relieving stress

Topoisomerase Il can cut &

rejoin both strands, after allowing %559

[Te}

5

", -
3’ €

another double strand to pass

through the gap, de-tangling it.

55

Error rate of pol itself is ~10-4, but overall rate

is 10-9, due to proofreading & repair, e.g.

 pol itself can back up & cut off a mismatched base
if one happens to be inserted

« priming the new strand is hard to do accurately,
hence RNA primers, later removed & replaced

« other enzymes scan helix for “bulges” caused by
base mismatch, figure out which strand is original,
cut away new (faulty) copy; DNA pol fills gap

« which strand is original? In bacteria, some A’s are
“methylated”, but not immediately after replication

56

14

Replication Summary

- Speed: 50 (eukaryotes) - 500
(prokaryotes) bp/sec

- Accuracy: 1 error per 10° bp
- Complex & highly optimized
- Highly similar across all living cells

- More info:
Alberts et al., Mol. Biol. of the Cell

57

15

