
CSE 527 Computational Biology Autumn 2007

Lectures 4-5: BLAST Alignment score significance PCR and DNA sequencing

This Week's Plan

- BLAST
- Scoring
- Weekly Bio Interlude: PCR & Sequencing

A Protein Structure: (Dihydrofolate Reductase)

Sequence Evolution

Nothing in Biology Makes Sense Except in the Light of Evolution

- Theodosius Dobzhansky, 1973
- Changes happen at random
- Deleterious/neutral/advantageous changes
 unlikely/possibly/likely spread widely in a population
- Changes are less likely to be tolerated in positions involved in many/close interactions, e.g.
 - enzyme binding pocket
 - protein/protein interaction surface

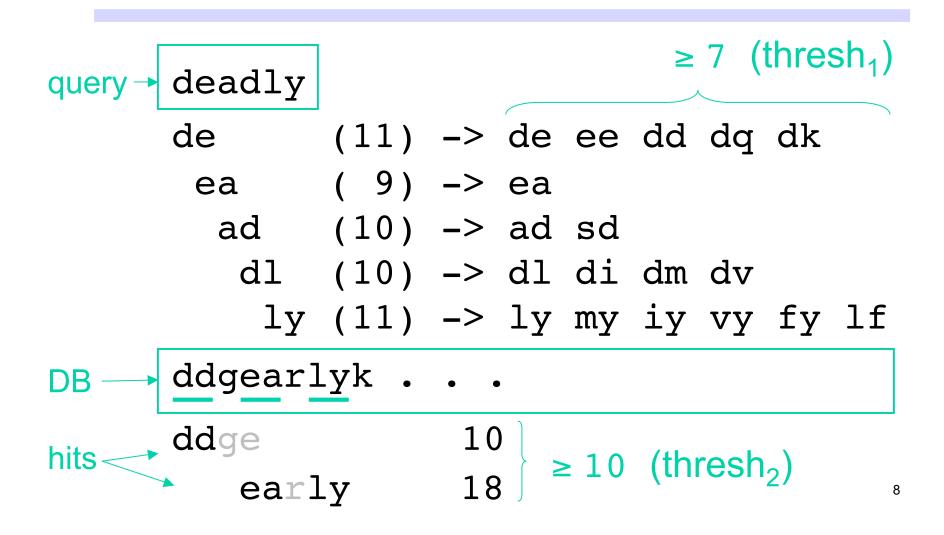
- ...

BLAST:

Basic Local Alignment Search Tool Altschul, Gish, Miller, Myers, Lipman, J Mol Biol 1990

- *The* most widely used comp bio tool
- Which is better: long mediocre match or a few nearby, short, strong matches with the same total score?
 - score-wise, exactly equivalent
 - biologically, later may be more interesting, & is common
 - at least, if must miss some, rather miss the former
- BLAST is a heuristic emphasizing the later
 - speed/sensitivity tradeoff: BLAST may miss former, but gains greatly in speed

BLAST: What


- Input:
 - a query sequence (say, 300 residues)
 - a data base to search for other sequences similar to the query (say, 10⁶ 10⁹ residues)
 - a score matrix σ(r,s), giving cost of substituting r for s (& perhaps gap costs)
 - various score thresholds & tuning parameters
- Output:
 - "all" matches in data base above threshold
 - "E-value" of each

BLAST: How

Idea: find parts of data base near a good match to some short subword of the query

- Break query into overlapping words w_i of small fixed length (e.g. 3 aa or 11 nt)
- For each w_i, find (empirically, ~50) "neighboring" words v_{ii} with score σ(w_i, v_{ii}) > thresh₁
- Look up each v_{ij} in database (via prebuilt index) -i.e., exact match to short, high-scoring word
- Extend each such "seed match" (bidirectional)
- Report those scoring > thresh₂, calculate E-values

BLAST: Example

BLOSUM 62

	Α	R	Ν	D	С	Q	Ε	G	Н	Ι	L	Κ	Μ	F	Ρ	S	Т	W	Υ	V
Α	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3
Ν	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3
С	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
Е	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3
н	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
Ι	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
Κ	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
Μ	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
Ρ	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3
Υ	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4

BLAST Refinements

- "Two hit heuristic" -- need 2 nearby, nonoverlapping, gapless hits before trying to extend either
- "Gapped BLAST" -- run heuristic version of Smith-Waterman, bi-directional from hit, until score drops by fixed amount below max
- PSI-BLAST -- For proteins, iterated search, using "weight matrix" pattern from initial pass to find weaker matches in subsequent passes

Significance of Alignments

- Is "42" a good score?
- Compared to what?
- Usual approach: compared to a specific "null model", such as "random sequences"

Hypothesis Testing: A Very Simple Example

- Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3)
- Decide: which
- How? Flip it 5 times. Suppose outcome D = HHHTH
- Null Model/Null Hypothesis M₀: p(H)=1/2
- Alternative Model/Alt Hypothesis M₁: p(H)=2/3
- Likelihoods:
 - $P(D | M_0) = (1/2) (1/2) (1/2) (1/2) (1/2) = 1/32$
 - $P(D | M_1) = (2/3) (2/3) (2/3) (1/3) (2/3) = 16/243$

• Likelihood Ratio:
$$\frac{p(D \mid M_1)}{p(D \mid M_0)} = \frac{16/243}{1/32} = \frac{512}{243} \approx 2.1$$

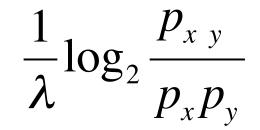
I.e., alt model is \approx 2.1x more likely than null model, given data

Hypothesis Testing, II

- Log of likelihood ratio is equivalent, often more convenient
 - add logs instead of multiplying...
- "Likelihood Ratio Tests": reject null if LLR > threshold
 - LLR > 0 disfavors null, but higher threshold gives stronger evidence against
- Neyman-Pearson Theorem: For a given error rate, LRT is as good a test as any (subject to some fine print).

p-values

- the *p-value* of such a test is the probability, assuming that the null model is true, of seeing data as extreme or more extreme that what you actually observed
- e.g., we observed 4 heads; p-value is prob of seeing 4 or 5 heads in 5 tosses of a fair coin
- Why interesting? It measures probability that we would be making a mistake in rejecting null.
- Usual scientific convention is to reject null only if p-value is < 0.05; sometimes demand p << 0.05
- can analytically find p-value for simple problems like coins; often turn to simulation/permutation tests for more complex situations; as below


A Likelihood Ratio Test for Alignment

- Defn: two proteins are *homologous* if they are alike because of shared ancestry; similarity by descent
- suppose among proteins overall, residue x occurs with frequency p_x
- then in a random alignment of 2 random proteins, you would expect to find x aligned to y with prob p_xp_y
- suppose among *homologs*, x & y align with prob p_{xy}
- are seqs X & Y homologous? Which is more likely, that the alignment reflects chance or homology? Use a likelihood ratio test.

 $\sum_{i} \log \frac{P_{x_i y_i}}{p_{x_i} p_{y_i}}$

Non-ad hoc Alignment Scores

- Take alignments of homologs and look at frequency of x-y alignments vs freq of x, y overall
- Issues
 - biased samples
 - evolutionary distance
- BLOSUM approach
 - large collection of trusted alignments (the BLOCKS DB)
 - subsetted by similarity, e.g.
 BLOSUM62 => 62% identity

ad hoc Alignment Scores?

- Make up any scoring matrix you like
- Somewhat surprisingly, under pretty general assumptions^{**}, it is *equivalent* to the scores constructed as above from some set of probabilities p_{xy}, so you might as well understand what they are

^{**} e.g., average scores should be negative, but you probably want that anyway, otherwise local alignments turn into global ones, and some score must be > 0, else best match is empty

BLOSUM 62

	Α	R	Ν	D	С	Q	Ε	G	Н	Ι	L	Κ	Μ	F	Ρ	S	Т	W	Υ	V
Α	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3
Ν	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3
С	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
Е	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3
н	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
Ι	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
Κ	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
Μ	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
Ρ	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3
Υ	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4

Overall Alignment Significance, I A Theoretical Approach: EVD

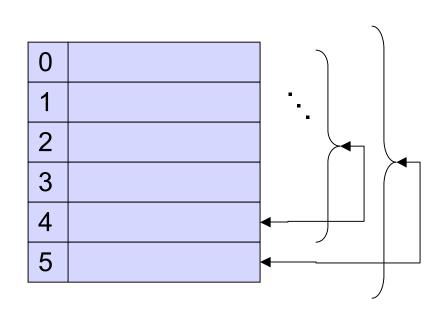
- Let X_i , $1 \le i \le N$, be indp. random variables drawn from some (nonpathological) distribution
- Q. what can you say about distribution of $y = sum\{X_i\}$?
- A. y is approximately normally distributed
- Q. what can you say about distribution of $y = max\{X_i\}$?
- A. it's approximately an Extreme Value Distribution (EVD)

$$P(y \le z) \cong \exp(-KNe^{-\lambda z}) \tag{(*)}$$

For ungapped local alignment of seqs x, y, $N \sim |x|^*|y|$

 λ , K depend on scores, etc., or can be estimated by curve-fitting random scores to (*). (cf. reading)

EVD Pro/Con


- Pro:
 - gives p-values for alignment scores
- Con:
 - It's only approximate
 - parameter estimation
 - theory may not apply. E.g., it is NOT known to hold for gapped alignments (although empirically it seems to work pretty well).

Overall Alignment Significance, II Empirical (via randomization)

- generate N random sequences (say N = $10^3 10^6$)
- align x to each & score
- if k of them have better score than alignment of x to y, then the (empirical) probability of a chance alignment as good as observed x:y alignment is k/N
- How to generate "random" sequences?
 - Alignment scores often sensitive to sequence composition
 - so uniform 1/20 or 1/4 is a bad idea
 - even background p_i can be dangerous
 - Better idea: *permute* y N times

Generating Random Permutations

```
for (i= n-1; i>0; i--){
    j = random(0..i);
    swap X[i]<-> X[j];
}
```


Permutation Pro/Con

- Pro:
 - Gives empirical p-values for alignments with characteristics like sequence of interest, e.g. residue frequencies
- Con:
 - Can be inaccurate if your method of generating random sequences is unrepresentative
 - E.g., probably better to preserve di-, tri-residue statistics and/or other higher-order characteristics, but increasingly hard to know exactly what to model & how
 - Slow
 - Especially if you want to assess low-probability p-values

p-values & multiple testing

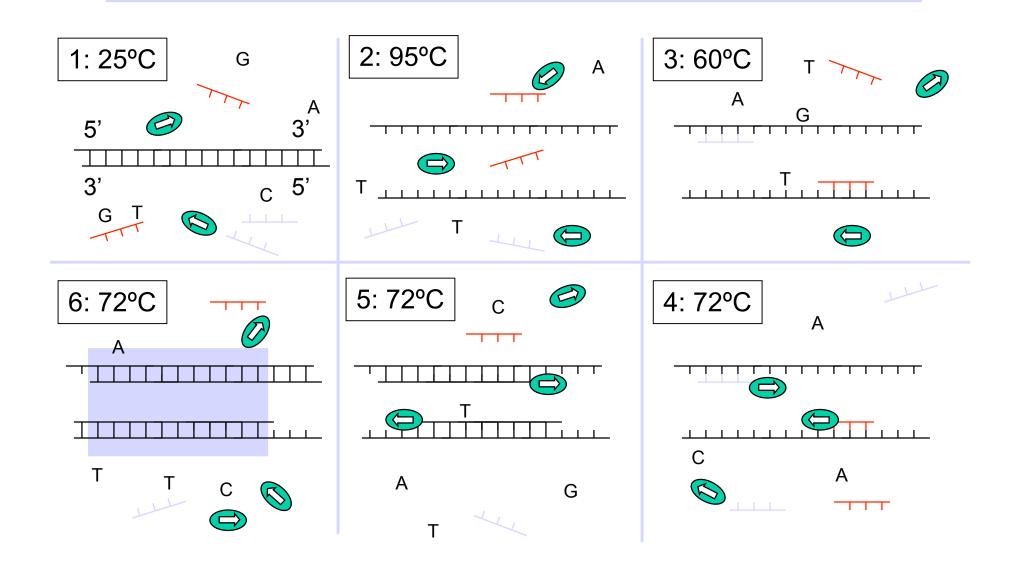
- Above give "p-values": probability of a score more extreme than observed if the target sequence were random
- must be careful whether p-value means wrt comparison to one other random protein, or best of a database of n random proteins
- E.g., suppose p-value for x:y match is 10⁻³, then you'd expect to see a score that good only one time in a thousand among nonhomologous sequences
- Sounds good
- What if you *found* y by picking best match among 10⁴ proteins?
- Sounds not so good

E-values

- "p-value": probability of a score more extreme than observed in a given random target data base
- E-value: expected number of matches that good or better in a random data base of the given size & composition
- Related: P = 1 exp(-E)
 - E = 5 <--> P = .993
 - E = 10 <--> P = .99995
 - $E = .01 < --> P = E E^{2}/2 + E^{3}/3! \dots \approx E$
- both equally valid; E-value is perhaps a more intuitively interpretable quantity, & perhaps makes role of data base size more explicit

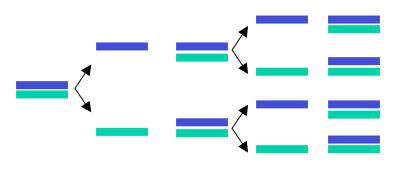
Issues

- What if the model is wrong?
- E.g., are adjacent positions really independent?


Summary

- BLAST is a highly successful search/alignment heuristic. It looks for alignments anchored by short, strong, ungapped "seed" alignments
- Assessing statistical significance of alignment scores is crucial to practical applications
 - score matrices derived from "likelihood ratio" test of trusted alignments vs random "null" model
 - for gapless alignments, Extreme Value Distribution (EVD) is theoretically justified for overall significance of alignment scores; empirically seems ok for gapped alignments, too
 - permutation tests are a simple (but brute force) alternative

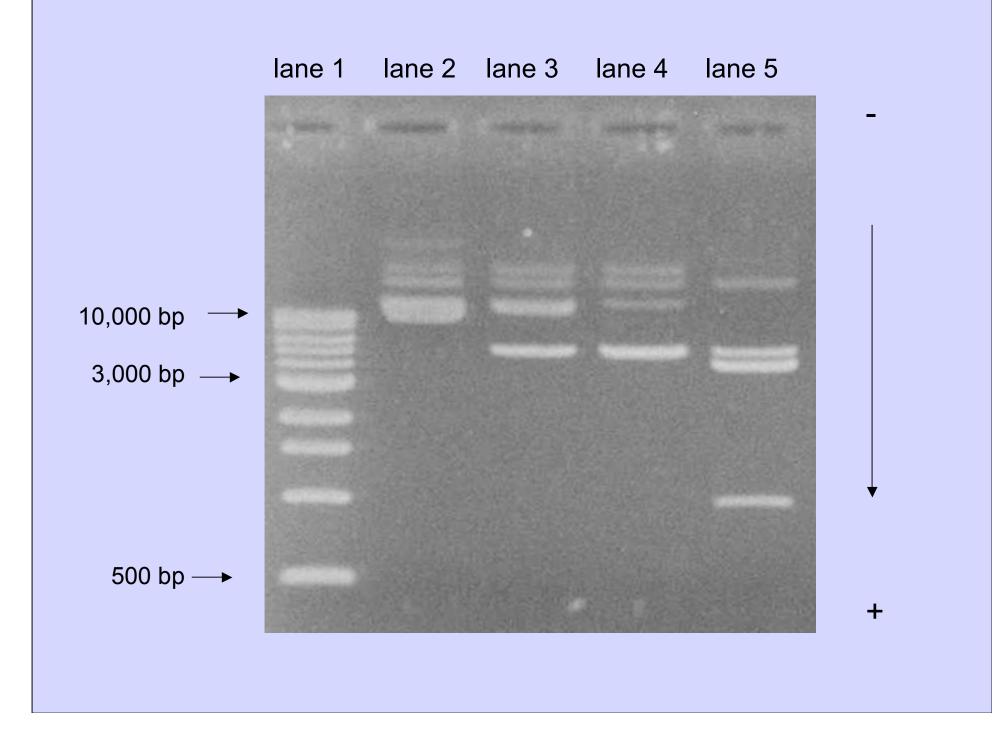
Weekly Bio(tech) Interlude


2 Nobel Prizes: PCR: Kary Mullis, 1993 DNA Sequencing: Frederick Sanger, 1980

PCR

Geyser, Yellowstone National Park

PCR


- Ingredients:
 - many copies of deoxy nucleotide triphosphates
 - many copies of two primer sequences (~20 nt each)
 - readily synthesized
 - many copies of Taq polymerase (Thermus aquaticus),
 - readily available commercialy
 - as little as 1 strand of template DNA
 - a programmable "thermal cycler"
- Amplification: million to billion fold
- Range: up to 2k bp routinely; 50k with other enzymes & care
- Very widely used; forensics, archeology, cloning, sequencing, ...

DNA Forensics

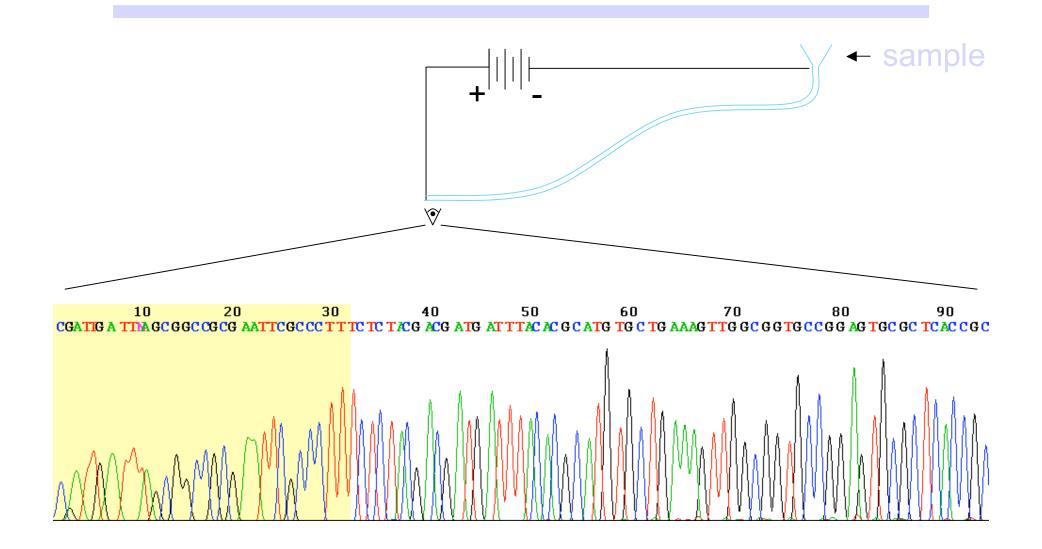
- E.g. FBI "CODIS" (combined DNA indexing system) data base
- pick 13 short, variable regions of human genome
- amplify each from, e.g., small spot of dried blood
- measure product lengths (next slides)
- PCR is important in that sample size is reduced from grams of tissue to a few cells

Gel Electrophoresis

- DNA/RNA backbone is negatively charges
- Molecules moves slowly in gels under an electric field
 - agarose gels for large molecules
 - polyacrylamide gels for smaller ones
- Smaller molecules move faster
- So, you can separate DNAs & RNAs by size

DNA Sequencing

- Like one-cycle, one-primer PCR
- Suppose 0.1% of A's:
 - are *di*-deoxy adenosine's; но-ё-о-ё-оbackbone can't extend
 - carry a green florescent dye
- Separate by capillary gel electrophoresis
- If frags of length 42, 49, 50, 55 ... glow green, those positions are A's
- Ditto C's (blue), G's (yellow), T's (red)



 H_2N

Ν

OH

DNA Sequencing

DNA Sequencing

- Highly automated
- Typically can "read" about 600 nt in one run
- "Whole Genome Shotgun" approach:
 - cut genome randomly into ~ G / 600 x 10 fragments
 - sequence each
 - reassemble by computer

- Complications: repeated region, missed regions, sequencing errors, chimeric DNA fragments, …
- But overall accuracy ~10⁻⁴, if careful

Summary

- PCR allows simple *in vitro* amplification of minute quantities of DNA (having pre-specified boundaries)
- Sanger sequencing uses
 - a PCR-like setup with modified chemistry to generate varying length prefixes of a DNA template with the last nucleotide of each color-coded
 - gel electrophoresis to separate DNA by size, giving sequence
- Sequencing random overlapping fragments allows genome sequencing