CSE 527 Autumn 2007

Lectures 8-9 (& part of 10)

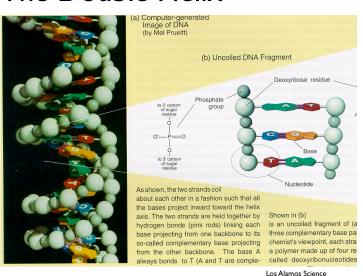
Motifs: Representation & Discovery

DNA Binding Proteins

A variety of DNA binding proteins ("transcription factors"; a significant fraction, perhaps 5-10%, of all human proteins) modulate transcription of protein coding genes

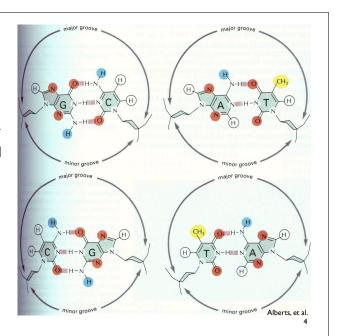
2

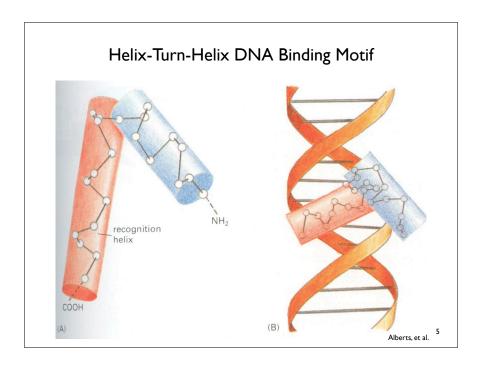
The Double Helix

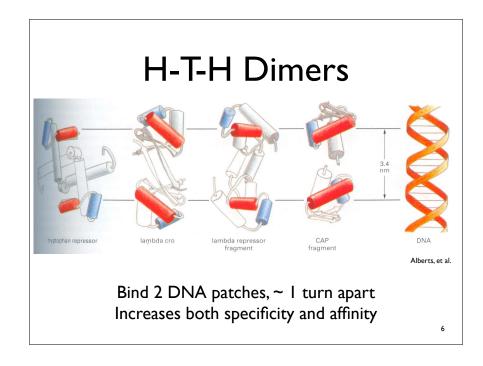


In the groove

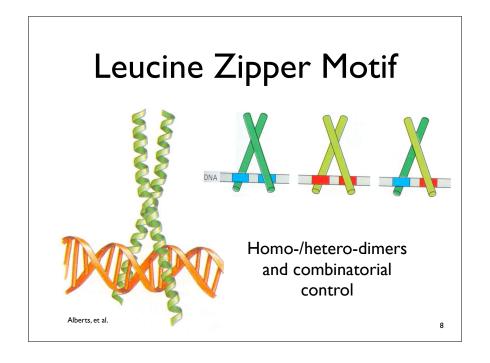
Different patterns of potential H bonds at edges of different base pairs, accessible esp. in major groove

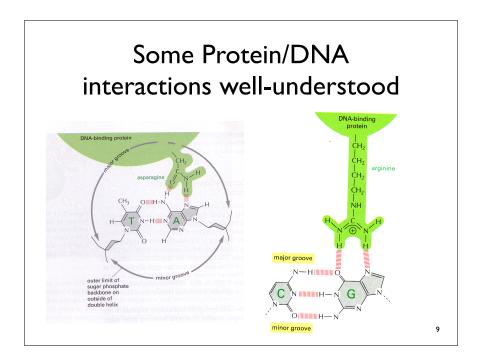


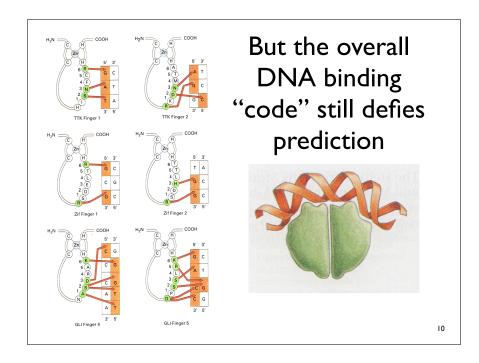


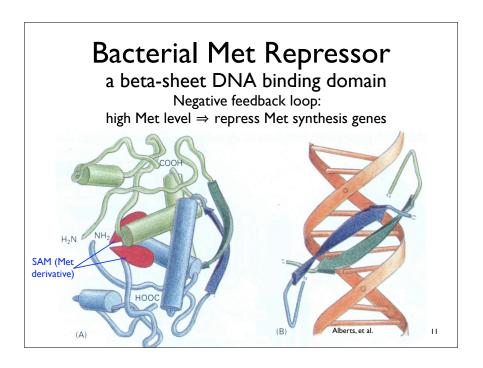












DNA binding site summary

- complex "code"
- short patches (6-8 bp)
- often near each other (I turn = 10 bp)
- often reverse-complements
- not perfect matches

Sequence Motifs

Last few slides described structural motifs in proteins

Equally interesting are the DNA sequence motifs to which these proteins bind - e.g., one leucine zipper dimer might bind (with varying affinities) to dozens or hundreds of similar sequences

E. coli Promoters

"TATA Box" ~ 10bp upstream of

transcription start

TACGAT

How to define it? Consensus is TATAAT

TAAAAT ТАТАСТ

BUT all differ from it.

GATAAT

Allow k mismatches?

TATGAT

Equally weighted?

TATGTT

Wildcards like R,Y? ({A,G}, {C,T}, resp.)

E. coli Promoters

- "TATA Box" consensus TATAAT ~ 10bp upstream of transcription start
- Not exact: of 168 studied (mid 80's)
 - nearly all had 2/3 of TAxyzT
 - 80-90% had all 3
 - -50% agreed in each of x,y,z
 - no perfect match
- Other common features at -35, etc.

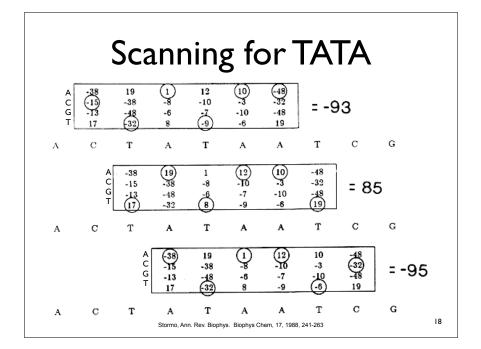
TATA Box Frequencies

pos base	1	2	3	4	5	6
Α	2	95	26	59	51	1
С	9	2	14	13	20	3
G	10	1	16	15	13	0
Т	79	3	44	13	17	96

TATA Scores

pos base	1	2	3	4	5	6
Α	-36	19	1	12	10	-46
С	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46(?)
Т	17	-31	8	-9	-6	19

7



Score Distribution (Simulated)

Weight Matrices: Statistics

Assume:

 $f_{b,i}$ = frequency of base b in position i in TATA

 f_b = frequency of base b in all sequences

Log likelihood ratio, given $S = B_1B_2...B_6$:

$$\log \left(\frac{P(S|\text{ "tata"})}{P(S|\text{ "non-tata"})} \right) = \log \frac{\prod_{i=1}^6 f_{B_i,i}}{\prod_{i=1}^6 f_{B_i}} = \sum_{i=1}^6 \log \frac{f_{B_i,i}}{f_{B_i}}$$

Assumes independence

Neyman-Pearson

Given a sample $x_1, x_2, ..., x_n$, from a distribution $f(...|\Theta)$ with parameter Θ , want to test hypothesis $\Theta = \theta_1$ vs $\Theta = \theta_2$.

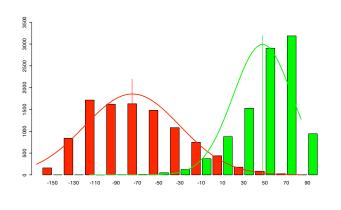
Might as well look at likelihood ratio:

$$\frac{f(x_1, x_2, ..., x_n | \theta_1)}{f(x_1, x_2, ..., x_n | \theta_2)} > \tau$$

(or log likelihood ratio)

21

Score Distribution (Simulated)



22

What's best WMM?

Given 20 sequences $s_1, s_2, ..., s_k$ of length 8, assumed to be generated at random according to a WMM defined by 8 x (4-1) parameters θ , what's the best θ ?

E.g., what's MLE for θ given data $s_1, s_2, ..., s_k$?

Answer: count frequencies per position.

Weight Matrices: Chemistry

Experiments show ~80% correlation of log likelihood weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus [Stormo & Fields]

23

Another WMM example

8 Sequences:

ATG ATG ATG ATG ATG GTG GTG TTG

Freq.	Col I	Col 2	Col3
Α	.625	0	0
С	0	0	0
G	.250	0	- 1
Т	.125	I	0

LLR	Col I	Col 2	Col 3
Α	1.32	8	8
С	-8	-8	-8
G	0	-8	2.00
Т	-1.00	2.00	-∞

Log-Likelihood Ratio:

$$\log_2 \frac{f_{x_i,i}}{f_{x_i}}, \ f_{x_i} = \frac{1}{4}$$

25

27

Non-uniform Background

- E. coli DNA approximately 25% A, C, G,T
- M. jannaschi 68% A-T, 32% G-C

LLR from previous example, assuming

$$f_A = f_T = 3/8$$

 $f_C = f_G = 1/8$

LLR	Col I	Col 2	Col 3
Α	.74	-8	-8
C	-8	-8	-∞
G	1.00	-8	3.00
Т	-1.58	1.42	-8

e.g., G in col 3 is 8 x more likely via WMM than background, so (log_3) score = 3 (bits).

2

Relative Entropy

AKA Kullback-Liebler Distance/Divergence, AKA Information Content

Given distributions P, Q

$$H(P||Q) = \sum_{x \in Q} P(x) \log \frac{P(x)}{Q(x)} \ge \mathbf{0}$$

Notes:

Let
$$P(x)\log\frac{P(x)}{Q(x)}=0$$
 if $P(x)=0$ [since $\lim_{y\to 0}y\log y=0]$

Undefined if
$$0 = Q(x) < P(x)$$

WMM: How "Informative"? Mean score of site vs bkg?

For any fixed length sequence x, let P(x) = Prob. of x according to WMMQ(x) = Prob. of x according to background

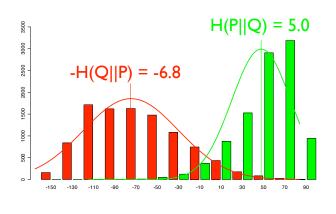
Relative Entropy:

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log_2 \frac{P(x)}{Q(x)}$$

HOUR HOUR

H(P||Q) is expected log likelihood score of a sequence randomly chosen from WMM; -H(Q||P) is expected score of Background

WMM Scores vs Relative Entropy



For WMM, you can show (based on the assumption of independence between columns), that:

$$H(P||Q) = \sum_{i} H(P_i||Q_i)$$

where P_i and Q_i are the WMM/background distributions for column i.

WMM Example, cont.

Freq.	Col I	Col 2	Col3
Α	.625	0	0
С	0	0	0
G	G .250		I
Т	.125		0

Uniform

	_			
LLR	Col I	Col 2	Col 3	
Α	1.32	-∞	-∞	
С	-8	-∞	-8	
G	0	-∞	2.00	
Т	-1.00	2.00	-8	
RelEnt	.70	2.00	2.00	4.70

Non-uniform

LLR	Col I	Col 2	Col 3	
Α	.74	-∞	-∞	
C	-8	-∞	-∞	
G	1.00	-∞	3.00	
Т	-1.58	1.42	-∞	
RelEnt	.51	1.42	3.00	4.93

Pseudocounts

Are the $-\infty$'s a problem?

Certain that a given residue *never* occurs in a given position? Then $-\infty$ just right

Else, it may be a small-sample artifact

Typical fix: add a *pseudocount* to each observed count—small constant (e.g., .5, 1)

Sounds ad hoc; there is a Bayesian justification

WMM Summary

- Weight Matrix Model (aka Position Specific Scoring Matrix, PSSM, "possum", 0th order Markov models)
- Simple statistical model assuming independence between adjacent positions
- To build: count (+ pseudocount) letter frequency per position, log likelihood ratio to background
- To scan: add LLRs per position, compare to threshold
- Generalizations to higher order models (i.e., letter frequency per position, conditional on neighbor) also possible, with enough training data

33

How-to Questions

Given aligned motif instances, build model?

- Frequency counts (above, maybe with pseudocounts)

Given a model, find (probable) instances

- Scanning, as above

Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions for co-expressed genes from a microarray experiment)

- Hard... rest of lecture.

3.

Motif Discovery

Unfortunately, finding a site of max relative entropy in a set of unaligned sequences is NP-hard [Akutsu]

Motif Discovery: 4 example approaches

Brute Force

Greedy search

Expectation Maximization

Gibbs sampler

35

Brute Force

Input:

• Seqs $s_1, s_2, ..., s_k$ (len \sim n, say), each w/ one instance of an unknown length I motif

Algorithm:

- create singleton set with each length I subsequence of each s_1 , s_2 , ..., s_k (~nk sets)
- for each set, add each possible length I subsequence not already present ($\sim n^2 k(k-1)$ sets)
- repeat until all have k sequences (~n^kk! sets)
- compute relative entropy of each; pick best

problem:

39

Greedy Best-First Approach [Hertz & Stormo]

Input:

• Sequence s₁, s₂, ..., s_k; motif length *I*; "breadth" *d*

Algorithm:

- create singleton set with each length I subsequence of each $s_1, s_2, ..., s_k$
- for each set, add each possible length I subsequence not already present
- compute relative entropy of each
- discard all but d best
- repeat until all have k sequences

problems

Expectation Maximization [MEME, Bailey & Elkan, 1995]

Input (as above):

Sequence $s_1, s_2, ..., s_k$; motif length l; background model; again assume one instance per sequence (variants possible)

Algorithm: EM

Visible data: the sequences

Hidden data: where's the motif

 $Y_{i,j} = \begin{cases} 1 & \text{if motif in sequence } i \text{ begins at position } j \\ 0 & \text{otherwise} \end{cases}$

Parameters θ : The WMM

MEME Outline

Typical EM algorithm:

- Parameters θ^t at t^{th} iteration, used to estimate where the motif instances are (the hidden variables)
- Use those estimates to re-estimate the parameters θ to maximize likelihood of observed data, giving θ^{t+1}
- Repeat

Key: given a few good matches to best motif, expect to pick out more

Expectation Step

(where are the motif instances?)

where are the moth instances:)
$$\widehat{Y}_{i,j} = E(Y_{i,j} \mid s_i, \theta^t) \xrightarrow{\mathbb{R}^{g(0)}} \mathbb{R}^{g(0)}$$

$$= P(Y_{i,j} = 1 \mid s_i, \theta^t) \xrightarrow{P(Y_{i,j} = 1 \mid \theta^t)} \mathbb{R}^{g(0)}$$

$$= P(s_i \mid Y_{i,j} = 1, \theta^t) \xrightarrow{P(Y_{i,j} = 1 \mid \theta^t)} \mathbb{R}^{g(0)}$$

$$= cP(s_i \mid Y_{i,j} = 1, \theta^t)$$

$$= cP(s_i \mid Y_{i,j} = 1, \theta^t)$$

$$= c' \prod_{k=1}^{l} P(s_{i,j+k-1} \mid \theta^t)$$
where c' is chosen so that $\sum_{j} \widehat{Y}_{i,j} = 1$. Sequence i

Maximization Step

(what is the motif?)

Find θ maximizing expected value:

$$\begin{split} Q(\theta \mid \theta^t) &= E_{Y \sim \theta^t}[\log P(s, Y \mid \theta)] \\ &= E_{Y \sim \theta^t}[\log \prod_{i=1}^k P(s_i, Y_i \mid \theta)] \\ &= E_{Y \sim \theta^t}[\sum_{i=1}^k \log P(s_i, Y_i \mid \theta)] \\ &= E_{Y \sim \theta^t}[\sum_{i=1}^k \sum_{j=1}^{|s_i|-l+1} Y_{i,j} \log P(s_i, Y_{i,j} = 1 \mid \theta)] \\ &= E_{Y \sim \theta^t}[\sum_{i=1}^k \sum_{j=1}^{|s_i|-l+1} Y_{i,j} \log(P(s_i \mid Y_{i,j} = 1, \theta) P(Y_{i,j} = 1 \mid \theta))] \\ &= \sum_{i=1}^k \sum_{j=1}^{|s_i|-l+1} E_{Y \sim \theta^t}[Y_{i,j}] \log P(s_i \mid Y_{i,j} = 1, \theta) + C \\ &= \sum_{i=1}^k \sum_{j=1}^{|s_i|-l+1} \widehat{Y}_{i,j} \log P(s_i \mid Y_{i,j} = 1, \theta) + C \end{split}$$

42

M-Step (cont.)

$$Q(\theta \mid \theta^t) = \sum_{i=1}^k \sum_{j=1}^{|s_i|-l+1} \widehat{Y}_{i,j} \log P(s_i \mid Y_{i,j} = 1, \theta) + C$$

Exercise: Show this is maximized by "counting" letter frequencies over all possible motif instances, with counts weighted by $\widehat{Y}_{i,j}$, again the "obvious" thing.

Initialization

- 1. Try every motif-length substring, and use as initial θ a WMM with, say 80% of weight on that sequence, rest uniform
- 2. Run a few iterations of each
- 3. Run best few to convergence

(Having a supercomputer helps)

Another Motif Discovery Approach The Gibbs Sampler

Lawrence, et al. "Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Sequence Alignment," Science 1993

В	1	2	3	4	5	6	7	Posit	ion i	n site 10	11	12	13	14	15	16	17	18
Arg	94	222	265	137	9	9	137	137	9	9	9	52	222	94	94	9	265	606
Lys	9	133	442	380	9	71	380	194	9	133	9	9	71	9	9	9	71	256
Glu	53	9	96	401	9	9	140	140	9	9	9	53	140	140	9	9	9	53
Asp	67	9	9	473	9	9	299	125	9	67	9	67	67	9	9	9	9	67
Gln	9	600	224	9	9	9	224	9	9	9	9	9	278	63	278	9	9	170
His	240	9	´ 9	9	9	9	125	125	9	9	9	9	125	125	125	9	9	240
Asn	168	9	9	9	9	9	168	89	9	89	9	248	9	168	89	9	89	89
Ser	117	9	117	117	9	9	9	9	9	9	9	819	63	387	63	9	819	9
Gly	151	9	56	9	9	151	9	9	9	1141	9	151	9	56	9	9	56	9
Ala	.9	9	112	43	181	901	43	181	215	9	43	9	43	181	112	- 43	78	9
Thr	915	130	130	9	251	9	9	9	9	9	9	311	130	70	855	- 9	130	9
Pro	76	9	9	9	9	9	9	9	9	9	9	9	210	210	9	9	9	9
Cys	9	9	9	9	9	9	9	9	295	581	295	9	9	9	9	9	. 9	9
Val	58	107	9	9	500	9	9	. 9	156	9	598	9	205	58	9	746	9	58
Leu	9	121	9	9	149	9	93	149	458	9	149	9	37	37	9	177	9	9
Ile	9	166	114	61	323	9	114	166	9	9	427	9.	61	9	61	427	9	61
Met	9	104	9	9	. 9	9	9	198	198	9	104	9	9	198	9	9	9	. 9
Tyr	9	9	136	9	. 9	9	9	262	262	9	9	136	136	9	262	9	262	136
Phe	9	9	9	9	9	9	9	9	9	9	108	9	9	9	9	9	9	9
Trp	9	9	9	9	9	9	9	9	9	9	366	9	9	9	9	9	9	366

Sigma-37	223	IIDLTYIONK	SOKETGDILGISOMHVSR	LORKAVKKLR	240	A25944	
SpoIIIC	94	RFGLDLKKEK	TOREIAKELGISRSYVSR	IEKRALMKMF	111	A28627	
NahR	22	VVFNQLLVDR	RVSITAENLGLTQPAVSN	ALKRLRTSLQ	39	A32837	
Antennapedia	326	FHFNRYLTRR	RRIEIAHALCLTERQIKI	WFQNRRMKWK	343	A23450	
NtrC (Brady.)	449	LTAALAATRG	NQIRAADLLGLNRNTLRK	KIRDLDIQVY	466	B26499	
DicA	22	IRYRRKNLKH	TQRSLAKALKISHVSVSQ	WERGDSEPTG	39	B24328	(BVECDA)
MerD	5	, MNAY	TVSRLALDAGVSVHIVRD	YLLRGLLRPV	22	C29010	
Fis	73	LDMVMQYTRG	NQTRAALMMGINRGTLRK	KLKKYGMN	90	A32142	(DNECFS)
MAT a1	99	FRRKQSLNSK	EKEEVAKKCGITPLQVRV	WFINKRMRSK	116	A90983	(JEBY1)
Lambda cII	25	SALLNKIAML	GTEKTAEAVGVDKSQISR	WKRDWIPKFS	42	A03579	(QCBP2L)
Crp (CAP)	169	THPDGMQIKI	TRQEIGQIVGCSRETVGR	ILKMLEDQNL	186	A03553	(QRECC)
Lambda Cro	15	ITLKDYAMRF	GQTKTAKDLGVYQSAINK	AIHAGRKIFL	32	A03577	(RCBPL)
P22 Cro	12	YKKDVIDHFG	TQRAVAKALGISDAAVSQ	WKÉVIPEKDA	29	A25867	(RGBP22)
AraC	196	ISDHLADSNF	DIASVAQHVCLSPSRLSH	LFRQQLGISV	213	A03554	(RGECA)
Fnr	196	FSPREFRLTM	TRGDIGNYLGLTVETISR	LLGRFQKSGM	213		(RGECF)
HtpR	252	ARWLDEDNKS	TLQELADRYGVSAERVRQ	LEKNAMKKLR	269	A00700	(RGECH)
Ntrc (K.a.)	444	LTTALRHTQG	HKQEAARLLGWGRNTLTR	KLKELGME	461	A03564	(RGKBCP)
CytR			TMKDVALKAKVSTATVSR		28	A24963	,
DeoR			HLKDAAALLGVSEMTIRR		40		(RPECDO)
GalR	3		TIKDVARLAGVSVATVSR		20		(RPECG)
LacI	5		TLYDVAEYAGVSYQTVSR		22	A03558	
TetR			TTRKLAQKLGVEQPTLYW		43		(RPECTN)
TrpR	67		SQRELKNELGAGIATITR		84		(RPECW)
NifA			VQAKAARLLGMTPRQVAY		512	S02513	
SpoIIG			TQKDVADMMGISQSYISR		222	s07337	
Pin		-	PRQKVAIIYDVGVSTLYK		177	s07958	
PurR	- 3		TIKDVAKRANVSTTTVSH		20	S08477	
EbgR	3		TLKDIAIEAGVSLATVSR		20	s09205	
LexA			TRAEIAQRLGFRSPNAAE		44	S11945	
P22 cI	25	SSILNRIAIR	GQRKVADALGINESQISR		42	B25867	(Z1BPC2)
			******	***			

Some History

Geman & Geman, IEEE PAMI 1984

Hastings, Biometrika, 1970

Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, "Equations of State Calculations by Fast Computing Machines," J. Chem. Phys. 1953

Josiah Williard Gibbs, 1839-1903, American physicist, a pioneer of thermodynamics

How to Average

An old problem:

n random variables: x_1, x_2, \dots, x_k Joint distribution (p.d.f.): $P(x_1, x_2, \dots, x_k)$ Some function: $f(x_1, x_2, \dots, x_k)$ Want Expected Value: $E(f(x_1, x_2, \dots, x_k))$

How to Average

$$E(f(x_1, x_2, \dots, x_k)) = \int_{x_1} \int_{x_2} \dots \int_{x_k} f(x_1, x_2, \dots, x_k) \cdot P(x_1, x_2, \dots, x_k) dx_1 dx_2 \dots dx_k$$

Approach 1: direct integration (rarely solvable analytically, esp. in high dim)

Approach 2: numerical integration (often difficult, e.g., unstable, esp. in high dim)

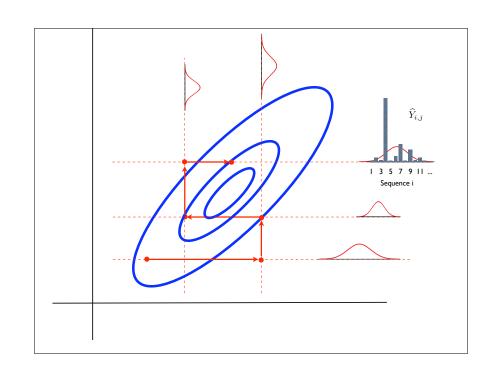
Approach 3: Monte Carlo integration

sample $\vec{x}^{(1)}, \vec{x}^{(2)}, \dots \vec{x}^{(n)} \sim P(\vec{x})$ and average:

 $E(f(\vec{x})) \approx \frac{1}{n} \sum_{i=1}^{n} f(\vec{x}^{(i)})$

Markov Chain Monte Carlo (MCMC)

- Independent sampling also often hard, but not required for expectation
- MCMC $ec{X}_{t+1} \sim P(ec{X}_{t+1} \mid ec{X}_t)$ w/ stationary dist = P
- Simplest & most common: Gibbs Sampling $P(x_i \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$
- Algorithm



- Input: again assume sequences s₁, s₂, ..., s_k
 with one length w motif per sequence
- Motif model: WMM
- Parameters: Where are the motifs? for $1 \le i \le k$, have $1 \le x_i \le |s_i| w + 1$
- "Full conditional": to calc $P(x_i = j \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$

build WMM from motifs in all sequences except i, then calc prob that motif in i^{th} seq occurs at j by usual "scanning" alg.

Overall Gibbs Alg

```
Randomly initialize x_i's for t = 1 to \infty for i = 1 to k discard motif instance from s_i; recalc WMM from rest for j = 1 ... |s_i|-w+1 calculate prob that i^{th} motif is at j: would average over, rather than sample from pick new x_i according to that distribution
```

54

Issues

Burnin - how long must we run the chain to reach stationarity?

Mixing - how long a post-burnin sample must we take to get a good sample of the stationary distribution? (Recall that individual samples are not independent, and may not "move" freely through the sample space.

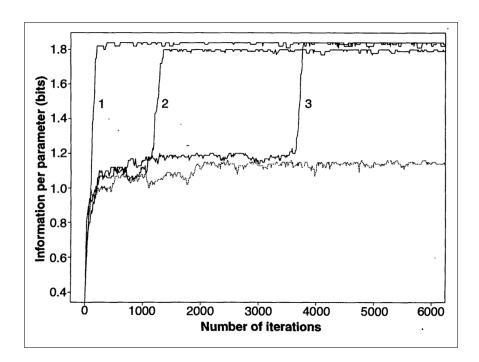
Also, many isolated modes.)

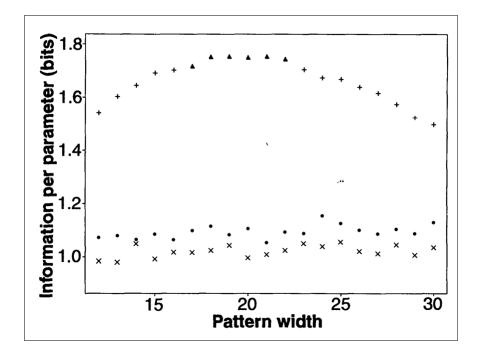
Variants & Extensions

"Phase Shift" - may settle on suboptimal solution that overlaps part of motif. Periodically try moving all motif instances a few spaces left or right.

Algorithmic adjustment of pattern width: Periodically add/remove flanking positions to maximize (roughly) average relative entropy per position

Multiple patterns per string





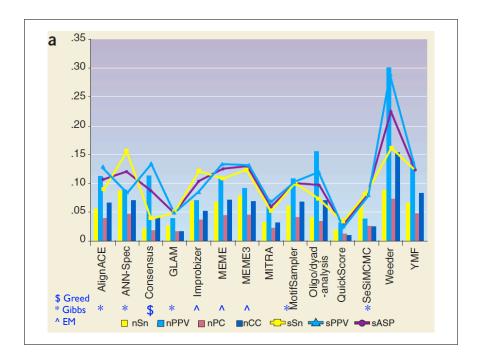
NATURE BIOTECHNOLOGY VOLUME 23 NUMBER 1 JANUARY 2005

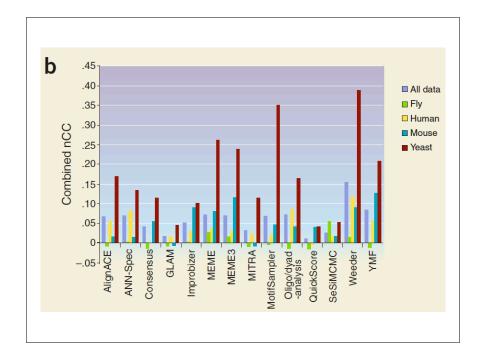
Assessing computational tools for the discovery of transcription factor binding sites

 $\label{eq:martin Tompa1,2, Nan Li1, Timothy L Bailey3, George M Church4, Bart De Moor5, Eleazar Eskin6, Alexander V Favorov$^7.8$, Martin C Frith7, Vutao Fu9, W James Kent0, V sevolod J Makeev$^7.8$, Andrei A Mironov$^7.11$, William Stafford Noble$^1.2$, Giulio Pavesi12, Graziano Pesole1, Mireille Régnier14, Nicolas Simonis15, Saurabh Sinha16, Gert Thijs3, Jacques van Helden15, Mathias Vandenbogaert14, Zhiping Weng9, Christopher Workman17, Chun Ye18, Zhou Zhu4$

Methodology

- 13 tools
- Real 'motifs' (Transfac)
- 56 data sets (human, mouse, fly, yeast)
- 'Real', 'generic', 'Markov'
- Expert users, top prediction only





Lessons

- Evaluation is hard (esp. when "truth" is unknown)
- Accuracy low
 - partly reflects defects in evaluation methodology (e.g. <= I prediction per data set; results better in synth data)
 - partly reflects difficult task, limited knowledge (e.g. yeast > others)
- No clear winner re methods or models

Motif Discovery Summary

- Important problem: a key to understanding gene regulation
- Hard problem: short, degenerate signals amidst much noise
- Many variants have been tried, for representation, search, and discovery. We looked at only a few:
 - Weight matrix models for representation & search
 - greedy, MEME and Gibbs for discovery
- Still much room for improvement. *Comparative* genomics, i.e. cross-species comparison is very promising