# CSE 527 Autumn 2007 

Lectures 8-9 (\& part of I0)
Motifs: Representation \& Discovery

## DNA Binding Proteins

A variety of DNA binding proteins ("transcription factors"; a significant fraction, perhaps $5-10 \%$, of all human proteins) modulate transcription of protein coding genes

## The Double Helix


(a) Computer-generated Image of DNA
(by Mel Prueitt)
(b) Uncoiled DNA Fragment


## As shown, the two strands coil

about each other in a fashion such that all the bases project inward toward the helix axis. The two strands are held together by hydrogen bonds (pink rods) linking each base projecting from one backbone to its so-called complementary base projecting from the other backbone. The base $A$ always bonds to $T$ ( A and T are comple-

Shown in (b)
is an uncoiled fragment of (a three complementary base pai chemist's viewpoint, each stra a polymer made up of four re called deoxyribonucleotides

## In the groove

## Different

 patterns of potential H bonds at edges of different base pairs, accessible esp. in major groove

## Helix-Turn-Helix DNA Binding Motif



## H-T-H Dimers



Alberts, et al.
Bind 2 DNA patches, $\sim$ I turn apart
Increases both specificity and affinity


# Zinc Finger Motif 



## Leucine Zipper Motif



Homo-/hetero-dimers and combinatorial control

## Some Protein/DNA interactions well-understood





TTK Finger 2


GLI Finger 4

# But the overall DNA binding "code" still defies prediction 



## Bacterial Met Repressor a beta-sheet DNA binding domain <br> Negative feedback loop:

 high Met level $\Rightarrow$ repress Met synthesis genes

## DNA binding site summary

- complex "code"
- short patches (6-8 bp)
- often near each other (I turn = 10 bp )
- often reverse-complements
- not perfect matches


## Sequence Motifs

Last few slides described structural motifs in proteins

Equally interesting are the DNA sequence motifs to which these proteins bind - e.g., one leucine zipper dimer might bind (with varying affinities) to dozens or hundreds of similar sequences

## E. coli Promoters

"TATA Box" ~ IObp upstream of transcription start How to define it?

Consensus is TATAAT
TACGAT
TAAAAT
TATACT BUT all differ from it Allow k mismatches?
Equally weighted?
GATAAT
TATGAT
TATGTT
Wildcards like $R, Y$ ? ( $\{\mathrm{A}, \mathrm{G}\},\{\mathrm{C}, \mathrm{T}\}$, resp.)

## E. coli Promoters

- "TATA Box" - consensus TATAAT ~ I Obp upstream of transcription start
- Not exact: of 168 studied (mid 80's)
- nearly all had $2 / 3$ of TAxyzT
- 80-90\% had all 3
$-50 \%$ agreed in each of $x, y, z$
- no perfect match
- Other common features at -35, etc.


## TATA Box Frequencies

| pos <br> base | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| A | 2 | 95 | 26 | 59 | 51 | 1 |
| C | 9 | 2 | 14 | 13 | 20 | 3 |
| G | 10 | 1 | 16 | 15 | 13 | 0 |
| T | 79 | 3 | 44 | 13 | 17 | 96 |

## TATA Scores

| pos <br> base | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| A | -36 | 19 | 1 | 12 | 10 | -46 |
| C | -15 | -36 | -8 | -9 | -3 | -31 |
| G | -13 | -46 | -6 | -7 | -9 | -46 |
| T | 17 | -31 | 8 | -9 | -6 | 19 |

## Scanning for TATA

| $\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{G} \\ & \mathrm{~T} \end{aligned}$ | $\begin{gathered} -38 \\ -18 \\ 17 \\ \hline \end{gathered}$ | $\begin{gathered} 19 \\ -38 \\ -48 \\ -32) \end{gathered}$ | $\begin{gathered} (1) \\ -6 \\ 8 \end{gathered}$ | $\begin{aligned} & 12 \\ & -10 \\ & -7 \\ & -9 \end{aligned}$ | $\begin{gathered} (10) \\ -3 \\ -10 \\ -6 \\ \hline \end{gathered}$ | $\begin{gathered} (-48) \\ -32 \\ -48 \\ 19 \\ \hline \end{gathered}$ | $=-93$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | C | T | A | T | $A$ | A | T | C | $G$ |
|  | A C G T | -38 -15 -13 17 | $\begin{aligned} & (19) \\ & -38 \\ & -48 \\ & -32 \end{aligned}$ | $\begin{gathered} 1 \\ -8 \\ -6 \\ 8 \end{gathered}$ | $\begin{gathered} (12) \\ -10 \\ -7 \\ -9 \\ \hline \end{gathered}$ | $\begin{gathered} (10) \\ -10 \\ -10 \\ -6 \end{gathered}$ | $\begin{array}{r} -48 \\ -32 \\ -48 \\ 19 \end{array}$ | $=85$ |  |
| A | C | T | A | T | A | A | T | C | G |
|  |  | A <br> $C$ <br> $C$ | $\begin{gathered} (-38) \\ -15 \\ 17 \\ \hline \end{gathered}$ | $\begin{gathered} 19 \\ -38 \\ -48 \\ -32 \end{gathered}$ | $\begin{gathered} 1 \\ \hline-8 \\ -6 \\ 8 \end{gathered}$ | $\begin{gathered} (12) \\ -10 \\ -7 \\ -9 \end{gathered}$ | $\begin{aligned} & 10 \\ & -3 \\ & -10 \\ & -6) \end{aligned}$ | $\begin{gathered} -48 \\ (-32) \\ -48 \\ 19 \end{gathered}$ |  |
| $A$ | C | T | A | T | A | A | T | C | G |
| Stormo, Ann. Rev. Biophys. Biophys Chem, 17, 1988, 241-263 |  |  |  |  |  |  |  |  |  |

## Score Distribution (Simulated)



## Weight Matrices: Statistics

Assume:
$f_{b, i}=$ frequency of base $b$ in position $i$ in TATA
$f_{b}=$ frequency of base $b$ in all sequences
Log likelihood ratio, given $S=B_{1} B_{2} \ldots B_{6}$ :

$$
\log \left(\frac{P(S \mid \text { "tata" })}{P(S \mid \text { "non-tata" })}\right)=\log \frac{\prod_{i=1}^{6} f_{B_{i}, i}}{\prod_{i=1}^{6} f_{B_{i}}}=\sum_{i=1}^{6} \log \frac{f_{B_{i}, i}}{f_{B_{i}}}
$$

Assumes independence

## Neyman-Pearson

Given a sample $x_{1}, x_{2}, \ldots, x_{n}$, from a distribution $f$ $($... $\mid \Theta)$ with parameter $\Theta$, want to test hypothesis $\Theta=\theta_{1}$ vs $\Theta=\theta_{2}$.

Might as well look at likelihood ratio:

$$
\frac{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}\right)}{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{2}\right)}>\tau
$$

(or log likelihood ratio)

## Score Distribution (Simulated)



## What's best WMM?

Given 20 sequences $s_{l}, s_{2}, \ldots, s_{k}$ of length 8 , assumed to be generated at random according to a WMM defined by $8 \times(4-I)$ parameters $\theta$, what's the best $\theta$ ?
E.g., what's MLE for $\theta$ given data $s_{1}, s_{2}, \ldots, s_{k}$ ?

Answer: count frequencies per position.

## Weight Matrices: Chemistry

Experiments show $\sim 80 \%$ correlation of log likelihood weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus
[Stormo \& Fields]

## Another WMM example

8 Sequences:
ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG
Log-Likelihood Ratio:

$$
\log _{2} \frac{f_{x_{i}, i}}{f_{x_{i}}}, f_{x_{i}}=\frac{1}{4}
$$

| Freq. | Col I | Col 2 | Col3 |
| :---: | :---: | :---: | :---: |
| A | .625 | 0 | 0 |
| C | 0 | 0 | 0 |
| G | .250 | 0 | I |
| T | .125 | I | 0 |


| LLR | Col I | Col 2 | Col 3 |
| :---: | :---: | :---: | :---: |
| A | 1.32 | $-\infty$ | $-\infty$ |
| C | $-\infty$ | $-\infty$ | $-\infty$ |
| G | 0 | $-\infty$ | 2.00 |
| T | -1.00 | 2.00 | $-\infty$ |

## Non-uniform Background

- E. coli - DNA approximately $25 \% \mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$
- M. jannaschi - 68\% A-T, 32\% G-C

LLR from previous example, assuming

$$
\begin{aligned}
& f_{A}=f_{T}=3 / 8 \\
& f_{C}=f_{G}=1 / 8
\end{aligned}
$$

| LLR | Col I | Col 2 | Col 3 |
| :---: | :---: | :---: | :---: |
| A | .74 | $-\infty$ | $-\infty$ |
| C | $-\infty$ | $-\infty$ | $-\infty$ |
| G | 1.00 | $-\infty$ | 3.00 |
| T | -1.58 | 1.42 | $-\infty$ |

e.g., G in col 3 is $8 \times$ more likely via WMM than background, so ( $\log _{2}$ ) score $=3$ (bits).

## Relative Entropy

AKA Kullback-Liebler Distance/Divergence, AKA Information Content

Given distributions P, Q

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \geq 0
$$

Notes:

$$
\begin{aligned}
& \text { Let } P(x) \log \frac{P(x)}{Q(x)}=0 \text { if } P(x)=0\left[\text { since } \lim _{y \rightarrow 0} y \log y=0\right] \\
& \text { Undefined if } 0=Q(x)<P(x)
\end{aligned}
$$

## WMM: How "Informative"? Mean score of site vs bkg?

For any fixed length sequence $x$, let $P(x)=$ Prob. of $x$ according to WMM $Q(x)=$ Prob. of $x$ according to background Relative Entropy:

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$


$H(P \| Q)$ is expected log likelihood score of a sequence randomly chosen from WMM ; $-H(Q \| P)$ is expected score of Background

## WMM Scores vs Relative Entropy



For WMM, you can show (based on the assumption of independence between columns), that :

$$
H(P \| Q)=\sum_{i} H\left(P_{i} \| Q_{i}\right)
$$

where $P_{i}$ and $Q_{i}$ are the WMM/background distributions for column i.

## WMM Example, cont.

| Freq. | Col I | Col 2 | Col3 |
| :---: | :---: | :---: | :---: |
| A | .625 | 0 | 0 |
| C | 0 | 0 | 0 |
| G | .250 | 0 | I |
| T | .125 | I | 0 |


| Uniform |
| :--- |
| LLR Col I Col 2 Col 3 <br> A 1.32 $-\infty$ $-\infty$ <br> C $-\infty$ $-\infty$ $-\infty$ <br> G 0 $-\infty$ 2.00 <br> T -1.00 2.00 $-\infty$ <br> RelEnt .70 2.00 2.00 |

Non-uniform

| LLR | Col I | Col 2 | Col 3 |
| :---: | :---: | :---: | :---: |
| A | .74 | $-\infty$ | $-\infty$ |
| C | $-\infty$ | $-\infty$ | $-\infty$ |
| G | 1.00 | $-\infty$ | 3.00 |
| T | -1.58 | 1.42 | $-\infty$ |
| RelEnt | .51 | 1.42 | 3.00 |

## Pseudocounts

Are the $-\infty$ 's a problem?
Certain that a given residue never occurs in a given position? Then $-\infty$ just right
Else, it may be a small-sample artifact
Typical fix: add a pseudocount to each observed count-small constant (e.g., .5, I)
Sounds ad hoc; there is a Bayesian justification

## WMM Summary

- Weight Matrix Model (aka Position Specific Scoring Matrix, PSSM,"possum", Oth order Markov models)
- Simple statistical model assuming independence between adjacent positions
- To build: count (+ pseudocount) letter frequency per position, log likelihood ratio to background
- To scan: add LLRs per position, compare to threshold
- Generalizations to higher order models (i.e., letter frequency per position, conditional on neighbor) also possible, with enough training data


## How-to Questions

Given aligned motif instances, build model?

- Frequency counts (above, maybe with pseudocounts)

Given a model, find (probable) instances

- Scanning, as above

Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions for co-expressed genes from a microarray experiment)

- Hard... rest of lecture.


## Motif Discovery

Unfortunately, finding a site of max relative entropy in a set of unaligned sequences is NP-hard [Akutsu]

# Motif Discovery: 4 example approaches 

Brute Force

Greedy search
Expectation Maximization
Gibbs sampler

## Brute Force

Input:

- Seqs $s_{l}, s_{2}, \ldots, s_{k}$ (len $\sim n$, say), each $w /$ one instance of an unknown length / motif
Algorithm:
- create singleton set with each length I subsequence of each $s_{1}, s_{2}, \ldots, s_{k}$ ( $\sim n k$ sets)
- for each set, add each possible length I subsequence not already present ( $\sim n^{2} k(k-I)$ sets)
- repeat until all have $k$ sequences ( $\sim n^{k} k$ ! sets)
- compute relative entropy of each; pick best


## Greedy Best-First Approach

 [Hertz \& Stormo]Input:

- Sequence $s_{l}, s_{2}, \ldots, s_{k}$; motif length $l$;"breadth" $d$ Algorithm:
- create singleton set with each length I subsequence of each $s_{1}, s_{2}, \ldots, s_{k}$
- for each set, add each possible length I subsequence not already present
- compute relative entropy of each
- discard all but $d$ best
- repeat until all have $k$ sequences


## Expectation Maximization [MEME, Bailey \& Elkan, 1995]

Input (as above):
Sequence $s_{1}, s_{2}, \ldots, s_{k}$; motif length $l ;$ background model; again assume one instance per sequence (variants possible)
Algorithm: EM
Visible data: the sequences
Hidden data: where's the motif

$$
Y_{i, j}= \begin{cases}1 & \text { if motif in sequence } i \text { begins at position } j \\ 0 & \text { otherwise }\end{cases}
$$

Parameters $\theta$ : The WMM

## MEME Outline

Typical EM algorithm:

- Parameters $\theta^{t}$ at $t^{t h}$ iteration, used to estimate where the motif instances are (the hidden variables)
- Use those estimates to re-estimate the parameters $\theta$ to maximize likelihood of observed data, giving $\theta^{t+1}$
- Repeat

Key: given a few good matches to best motif, expect to pick out more

## Expectation Step <br> (where are the motif instances?)

$$
\begin{aligned}
\widehat{Y}_{i, j} & =E\left(Y_{i, j} \mid s_{i}, \theta^{t}\right) \longrightarrow P\left(Y_{i, j}=1 \mid s_{i}, \theta^{t}\right) \\
& =P\left(s_{i} \mid Y_{i, j}=1, \theta^{t}\right) \frac{P\left(Y_{i, j}=1 \mid \theta^{t}\right)}{P\left(s_{i} \mid \theta^{t}\right)} \\
& =c P\left(s_{i} \mid Y_{i, j}=1, \theta^{t}\right) \\
& =c^{\prime} \prod_{k=1}^{l} P\left(s_{i, j+k-1} \mid \theta^{t}\right)
\end{aligned}
$$

where $c^{\prime}$ is chosen so that $\sum_{j} \widehat{Y}_{i, j}=1$.


I 3579 II ... Sequence i

## Maximization Step (what is the motif?)

Find $\theta$ maximizing expected value:

$$
\begin{aligned}
Q\left(\theta \mid \theta^{t}\right) & =E_{Y \sim \theta^{t}}[\log P(s, Y \mid \theta)] \\
& =E_{Y \sim \theta^{t}}\left[\log \prod_{i=1}^{k} P\left(s_{i}, Y_{i} \mid \theta\right)\right] \\
& =E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \log P\left(s_{i}, Y_{i} \mid \theta\right)\right] \\
& =E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} Y_{i, j} \log P\left(s_{i}, Y_{i, j}=1 \mid \theta\right)\right] \\
& =E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} Y_{i, j} \log \left(P\left(s_{i} \mid Y_{i, j}=1, \theta\right) P\left(Y_{i, j}=1 \mid \theta\right)\right)\right] \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} E_{Y \sim \theta^{t}}\left[Y_{i, j}\right] \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} \widehat{Y}_{i, j} \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C
\end{aligned}
$$

$$
\begin{gathered}
\text { M-Step (cont.) } \\
Q\left(\theta \mid \theta^{t}\right)=\sum_{i=1}^{k} \sum_{j=1}^{|s| 1|l| l \mid} \widehat{Y}_{i, j} \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C
\end{gathered}
$$

Exercise: Show this is maximized by "counting" letter frequencies over all possible motif instances, with counts weighted by $\widehat{Y}_{i, j}$, again the "obvious" thing.
$s_{1}:$ ACGGATT...
$s_{k}:$ GC...TCGGAC

| $\widehat{Y}_{1,1}$ | ACGG |
| :---: | :---: |
| $\widehat{Y}_{1,2}$ | CGGA |
| $\widehat{Y}_{1,3}$ | GGAT |
| $\vdots$ | $\vdots$ |
| $\widehat{Y}_{k, l-1}$ | CGGA |
| $\widehat{Y}_{k, l}$ | GGAC |

## Initialization

I. Try every motif-length substring, and use as initial $\theta$ a WMM with, say $80 \%$ of weight on that sequence, rest uniform
2. Run a few iterations of each
3. Run best few to convergence
(Having a supercomputer helps)

## Another Motif

## Discovery Approach The Gibbs Sampler

Lawrence, et al. "Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Sequence Alignment," Science 1993

| Sigma-37 | 223 | IIDLTYIQNK | SQKETGDILGISQMHVSR | LQRKAVKKLR | 240 | A25944 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spoilic | 94 | RFGLDLKKEK | TQREIAKELGISRSYVSR | IEKRALMKMF | 111 | A28627 |  |
| NahR | 22 | VVFNQLLVDR | RVSITAENLGLTQPAVSN | ALKRLRTSLQ | 39 | A32837 |  |
| Antennapedia | 326 | FHFNRYLTRR | RRIEIAHALCLTERQIKI | WFQNRRMKWK | 343 | A23450 |  |
| NtrC (Brady.) | 449 | LTAALAATRG | NQIRAADLLGLNRNTLRK | KIRDLDIQVY | 466 | B26499 |  |
| DicA | 22 | IRYRRKNLKH | TQRSLAKALKISHVSVSQ | WERGDSEPTG | 39 | B24328 | (BVECDA) |
| MerD | 5 | MNAY | TVSRLALDAGVSVHIVRD | YLLRGLLRPV | 22 | C29010 |  |
| Fis | 73 | LDMVMQYTRG | NQTRAALMMGINRGTLRK | KLKKYGMN | 90 | A32142 | (DNECFS) |
| MAT a1 | 99 | FRRKQSLNSK | EKEEVAKKCGITPLQVRV | WFINKRMRSK | 116 | A90983 | (JEBY1) |
| Lambda cII | 25 | SALLNKIAML | GTEKTAEAVGVDKSQISR | WKRDWIPKFS | 42 | A03579 | (QCBP2L) |
| Crp (CAP) | 169 | THPDGMQIKI | TRQEIGQIVGCSRETVGR | ILKMLEDQNL | 186 | A03553 | (QRECC) |
| Lambda Cro | 15 | ITLKDYAMRF | GQTKTAKDLGVYQSAINK | AIHAGRKIFL | 32 | A03577 | (RCBPL) |
| P22 Cro | 12 | YKKDVIDHFG | TQRAVAKALGISDAAVSQ | WKÉVIPEKDA | 29 | A25867 | (RGBP22) |
| AraC | 196 | ISDHLADSNF | DIASVAQHVCLSPSRLSH | LFRQQLGISV | 213 | A03554 | (RGECA) |
| Fnr | 196 | FSPREFRLTM | TRGDIGNYLGLTVETISR | LLGRFQKSGM | 213 | A03552 | (RGECF) |
| HtpR | 252 | ARWLDEDNKS | TLQELADRYGVSAERVRQ | LEKNAMKKLR | 269 | A00700 | (RGECH) |
| NtrC (K.a.) | 444 | LTTALRHTQG | HKQEAARLLGWGRNTLTR | KLKELGME | 461 | A03564 | (RGKBCP) |
| CytR | 11 | MKAKKQETAA | TMKDVALKAKVSTATVSR | ALMNPDKVSQ | 28 | A24963 | (RPECCT) |
| Deor | 23 | LQELKRSDKL | HLKDAAALLGVSEMTIRR | DLNNHSAPVV | 40 | A24076 | (RPECDO) |
| GalR | 3 | MA | TIKDVARLAGVSVATVSR | VINNSPKASE | 20 | A03559 | (RPECG) |
| LacI | 5 | MKPV | TLYDVAEYAGVSYQTVSR | VVNQASHVSA | 22 | A03558 | (RPECL) |
| TetR | 26 | LLNEVGIEGL | TTRKLAQKLGVEQPTLYW | HVKNKRALLD | 43 | A03576 | (RPECTN) |
| TrpR | 67 | IVEELLRGEM | SQRELKNELGAGIATITR | GSNSLKAAPV | 84 | A03568 | (RPECW) |
| NifA | 495 | LIAALEKAGW | VQAKAARLLGMTPRQVAY | RIQIMDITMP | 512 | S02513 |  |
| SpoIIG | 205 | RFGLVGEEEK | TQKDVADMMGISQSYISR | LEKRIIKRLR | 222 | S07337 |  |
| Pin | 160 | QAGRLIAAGT | PRQKVAIIYDVGVSTLYK | TFPAGDK | 177 | S07958 |  |
| PurR | 3 | MA | TIKDVAKRANVSTTTVSH | VINKTRFVAE | 20 | S08477 |  |
| EbgR | 3 | MA | TLKDIAIEAGVSLATVSR | VLNDDPTLNV | 20 | S09205 |  |
| LexA | 27 | DHISQTGMPP | TRAEIAQRLGFRSPNAAE | EHLKALARKG | 44 | S11945 |  |
| P22 cI | 25 | SSILNRIAIR | GQRKVADALGINESQISR | WKGDFIPKMG | 42 | B25867 | (Z1BPC2) |


| B | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $\mathrm{Posit}_{8}$ | 9 | $\begin{array}{r} \text { n site } \\ 10 \end{array}$ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arg | 94 | 222 | 265 | 137 | 9 | 9 | 137 | 137 | 9 | 9 | 9 | 52 | 222 | 94 | 94 | 9 | 265 | 606 |
| Lys | 9 | 133 | 442 | 380 | 9 | 71 | 380 | 194 | 9 | 133 | 9 | 9 | 71 | 9 | 9 | 9 | 71 | 256 |
| Glu | 53 | 9 | 96 | 401 | 9 | 9 | 140 | 140 | 9 | 9 | 9 | 53 | 140 | 140 | 9 | 9 | 9 | 53 |
| Asp | 67 | 9 | 9 | 473 | 9 | 9 | 299 | 125 | 9 | 67 | 9 | 67 | 67 | 9 | 9 | 9 | 9 | 67 |
| Gln | 9 | 600 | 224 | 9 | 9 | 9 | 224 | 9 | 9 | 9 | 9 | 9 | 278 | 63 | 278 | 9 | 9 | 170 |
| His | 240 | 9 | 9 | 9 | 9 | 9 | 125 | 125 | 9 | 9 | 9 | 9 | 125 | 125 | 125 | 9 | 9 | 240 |
| Asn | 168 | 9 | 9 | 9 | 9 | 9 | 168 | 89 | 9 | 89 | 9 | 248 | 9 | 168 | 89 | 9 | 89 | 89 |
| Ser | 117 | 9 | 117 | 117 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 819 | 63 | 387 | 63 | 9 | 819 | 9 |
| Gly | 151 | 9 | 56 | 9 | 9 | 151 | 9 | 9 | 9 | 1141 | 9 | 151 | 9 | 56 | 9 | 9 | 56 | 9 |
| Ala | '9 | 9 | 112 | 43 | 181 | 901 | 43 | 181 | 215 | 9 | 43 | 9 | 43 | 181 | 112 | -. 43 | 78 | 9 |
| Thr | 915 | 130 | 130 | 9 | 251 | 9 | 9 | 9 | 9 | 9 | 9 | 311 | 130 | 70 | 855 | 9 | 130 | 9 |
| Pro | 76 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 210 | 210 | 9 | 9 | 9. | 9 |
| Cys | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 295 | 581 | 295 | 9 | 9 | 9 | 9 | 9 | . 9 | 9 |
| Val | 58 | 107 | 9 | 9 | 500 | 9 | 9 | 9 | 156 | 9 | 598 | 9 | 205 | 58 | 9 | 746 | 9 | 58 |
| Leu | 9 | 121 | 9 | 9 | 149 | 9 | 93 | 149 | 458 | 9 | 149 | 9 | 37 | 37 | 9 | 177 | 9 | 9 |
| Ile | 9 | 166 | 114 | 61 | 323 | 9 | 114 | 166 | 9 | 9 | 427 | 9. | 61 | 9 | 61 | 427 | 9 | 61 |
| Met | 9 | 104 | 9 | 9 | 9 | 9 | 9 | 198 | 198 | 9 | 104 | 9 | 9 | 198 | 9 | 9 | 9 | 9 |
| Tyr | 9 | 9 | 136 | 9 | 9 | 9 | 9 | 262 | 262 | 9 | 9 | 136 | 136 | 9 | 262 | 9 | 262 | 136 |
| Phe | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 108 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
| Trp | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 366 | 9 | 9 | 9 | 9 | 9 | 9 | 366 |

## Some History

Geman \& Geman, IEEE PAMI I 984
Hastings, Biometrika, 1970
Metropolis, Rosenbluth, Rosenbluth, Teller, \& Teller,"Equations of State Calculations by Fast Computing Machines," J. Chem. Phys. 1953

Josiah Williard Gibbs, I839-I903, American physicist, a pioneer of thermodynamics

## How to Average

An old problem:
n random variables:

$$
\begin{gathered}
x_{1}, x_{2}, \ldots, x_{k} \\
P\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
E\left(f\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)
\end{gathered}
$$

Joint distribution (p.d.f.):
Some function:
Want Expected Value:

## How to Average

$$
E\left(f\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right)=
$$

$$
\int_{x_{1}} \int_{x_{2}} \cdots \int_{x_{k}} f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \cdot P\left(x_{1}, x_{2}, \ldots, x_{k}\right) d x_{1} d x_{2} \ldots d x_{k}
$$

Approach I: direct integration
(rarely solvable analytically, esp. in high dim)
Approach 2: numerical integration
(often difficult, e.g., unstable, esp. in high dim)
Approach 3: Monte Carlo integration
sample $\vec{x}^{(1)}, \vec{x}^{(2)}, \ldots \vec{x}^{(n)} \sim P(\vec{x})$ and average:

$$
E(f(\vec{x})) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(\vec{x}^{(i)}\right)
$$

## Markov Chain Monte Carlo (MCMC)

- Independent sampling also often hard, but not required for expectation
- MCMC $\vec{X}_{t+1} \sim P\left(\vec{X}_{t+1} \mid \vec{X}_{t}\right)$ w/ stationary dist $=p$
- Simplest \& most common: Gibbs Sampling

$$
P\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

- Algorithm

$$
\begin{aligned}
& \text { for } t=I \text { to } \infty \\
& \text { for } i=I \text { to } k \text { do: }
\end{aligned}
$$

$$
x_{t+1, i} \sim P\left(x_{t+1, i} \mid \underline{\left.x_{t+1,1}, x_{t+1,2}, \ldots, x_{t+1, i-1}, \underline{x_{t, i+1}}, \ldots, x_{t, k}\right)}\right.
$$

回

- Input: again assume sequences $s_{1}, s_{2}, \ldots, s_{k}$ with one length w motif per sequence
- Motif model: WMM
- Parameters: Where are the motifs?

$$
\text { for } 1 \leq i \leq k \text {, have } 1 \leq x_{i} \leq\left|s_{i}\right|-w+1
$$

- "Full conditional": to calc

$$
P\left(x_{i}=j \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)
$$

build WMM from motifs in all sequences except $i$, then calc prob that motif in $i^{\text {th }}$ seq occurs at $j$ by usual "scanning" alg.

## Overall Gibbs Alg

## Randomly initialize $x_{i}$ 's

for $t=1$ to $\infty$
for $i=1$ to $k$
discard motif instance from $s_{i}$; recalc WMM from rest for $j=1 . . .\left|s_{j}\right|-w+\mid$
Similar to MEME, but it would average over, rather than
sample from
calculate prob that $i^{\text {th }}$ motif is at $j$ :
$\Longrightarrow P\left(x_{i}=j \mid x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)$
pick new $x_{i}$ according to that distribution

## Issues

Burnin - how long must we run the chain to reach stationarity?

Mixing - how long a post-burnin sample must we take to get a good sample of the stationary distribution? (Recall that individual samples are not independent, and may not "move" freely through the sample space.
Also, many isolated modes.)

## Variants \& Extensions

"Phase Shift" - may settle on suboptimal solution that overlaps part of motif.
Periodically try moving all motif instances a few spaces left or right.

Algorithmic adjustment of pattern width: Periodically add/remove flanking positions to maximize (roughly) average relative entropy per position

Multiple patterns per string



# Assessing computational tools for the discovery of transcription factor binding sites 

Martin Tompa ${ }^{1,2}$, Nan $\mathrm{Li}^{1}$, Timothy L Bailey ${ }^{3}$, George M Church ${ }^{4}$, Bart De Moor ${ }^{5}$, Eleazar Eskin ${ }^{6}$, Alexander V Favorov ${ }^{7,8}$, Martin C Frith ${ }^{9}$, Yutao Fu ${ }^{9}$, W James Kent ${ }^{10}$, Vsevolod J Makeev ${ }^{7,8}$, Andrei A Mironov ${ }^{7,11}$, William Stafford Noble ${ }^{1,2}$, Giulio Pavesi ${ }^{12}$, Graziano Pesole ${ }^{13}$, Mireille Régnier ${ }^{14}$, Nicolas Simonis ${ }^{15}$, Saurabh Sinha ${ }^{16}$, Gert Thijs ${ }^{5}$, Jacques van Helden ${ }^{15}$, Mathias Vandenbogaert ${ }^{14}$, Zhiping Weng ${ }^{9}$, Christopher Workman ${ }^{17}$, Chun $\mathrm{Ye}^{18}$ \& Zhou Zhu ${ }^{4}$

## Methodology

- 13 tools
- Real 'motifs' (Transfac)
- 56 data sets (human, mouse, fly, yeast)
- 'Real','generic','Markov’
- Expert users, top prediction only




## Lessons

- Evaluation is hard (esp. when "truth" is unknown)
- Accuracy low
- partly reflects defects in evaluation methodology (e.g. <= I prediction per data set; results better in synth data)
- partly reflects difficult task, limited knowledge (e.g. yeast > others)
- No clear winner re methods or models


## Motif Discovery Summary

- Important problem: a key to understanding gene regulation
- Hard problem: short, degenerate signals amidst much noise
- Many variants have been tried, for representation, search, and discovery. We looked at only a few:
- Weight matrix models for representation \& search
- greedy, MEME and Gibbs for discovery
- Still much room for improvement. Comparative genomics, i.e. cross-species comparison is very promising

