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omAbstra
tIn this paper we formulate a des
ription of the 
omputation per-formed by a neuron as a 
ombination of dimensional redu
tionand nonlinearity. We implement this des
ription for the Hodgkin-Huxley model, identify the most relevant dimensions and �nd thenonlinearity. A two dimensional des
ription already 
aptures asigni�
ant fra
tion of the information that spikes 
arry about dy-nami
 inputs. This des
ription also shows that 
omputation in theHodgkin-Huxley model is more 
omplex than a simple integrate-and-�re or per
eptron model.1 Introdu
tionClassi
al neural network models approximate neurons as devi
es that sum theirinputs and generate a nonzero output if the sum ex
eeds a threshold. From our
urrent state of knowledge in neurobiology it is easy to 
riti
ize these models as over-simpli�ed: where is the 
omplex geometry of neurons, or the many di�erent kindsof ion 
hannel, ea
h with its own intri
ate multistate kineti
s? Indeed, progress atthis more mi
ros
opi
 level of des
ription has led us to the point where we 
an write(almost) exa
t models for the ele
tri
al dynami
s of neurons, at least on short times
ales. These nearly exa
t models are 
ompli
ated by any measure, in
luding tensif not hundreds of di�erential equations to des
ribe the states of di�erent 
hannelsin di�erent spatial 
ompartments of the 
ell. Fa
ed with this detailed mi
ros
opi
des
ription, we need to answer a question whi
h goes well beyond the biologi
al
ontext: given a 
ontinuous dynami
al system, what does it 
ompute?Our goal in this paper is to make this question about what a neuron 
omputes some-what more pre
ise, and then to explore what we take to be the simplest example,namely the Hodgkin{Huxley model [1℄,[2℄ (and refs therein).2 What do we mean by the question?Real neurons take as inputs signals at their synapses and give as outputs sequen
esof dis
rete, identi
al pulses|a
tion potentials or `spikes'. The inputs themselvesare spikes from other neurons, so the neuron is a devi
e whi
h takes N � 103 pulsetrains as inputs and generates one pulse train as output. If the system operates at 2mse
 resolution and the window of relevant inputs is 20 mse
, then we 
an think ofa single neuron as having an input des
ribed by a � �104 bit word|the presen
eor absen
e of a spike in ea
h 2 mse
 bin for ea
h presynapti
 
ell|whi
h is thenmapped to a one (spike) or zero (no spike). More realisti
ally, if the average spike



rates are � 10 se
�1, the input words 
an be 
ompressed by a fa
tor of ten. Thus wemight be able to think about neurons as evaluating a Boolean fun
tion of roughly1000 Boolean variables, and then 
hara
terizing the 
omputational fun
tion of the
ell amounts to spe
ifying this Boolean fun
tion.The above estimate, though 
rude, makes 
lear that there will be no dire
t empiri
alatta
k on the question of what a neuron 
omputes: there are too many possibilitiesto learn the fun
tion by brute for
e from any reasonable set of experiments. Progressrequires the hypothesis that the fun
tion 
omputed by a neuron is not arbitrary, butbelongs to a simple 
lass. Our suggestion is that this simple 
lass involves fun
tionsthat vary only over a low dimensional subspa
e of the inputs, and in fa
t we willstart by sear
hing for linear subspa
es.Spe
i�
ally, we begin by simplifying away the spatial stru
ture of neurons and takeinputs to be just inje
ted 
urrents into a point{like neuron. While this misses someof the ri
hness in real 
ells, it allows us to fo
us on developing our 
omputationalmethods. Further, it turns out that even this simple problem is not at all trivial. Ifthe input is an inje
ted 
urrent, then the neuron maps the history of this 
urrent,I(t < t0), into the presen
e or absen
e of a spike at time t0. More generally we mightimagine that the 
ell (or our des
ription) is noisy, so that there is a probability ofspiking P [spike�t0jI(t < t0)℄ whi
h depends on the 
urrent history. We emphasizethat the dependen
e on the history of the 
urrent means that there still are manydimensions to the input signal even though we have 
ollapsed any spatial variations.If we work at time resolution �t and assume that 
urrents in a window of size Tare relevant to the de
ision to spike, then the inputs live in a spa
e of D = T=�t,of order 100 dimensions in many interesting 
ases.If the neuron is sensitive only to a low dimensional linear subspa
e, we 
an de�nea set of signals s1; s2; � � � ; sK by �ltering the 
urrent,s� = Z 10 dtf�(t)I(t0 � t); (1)so that the probability of spiking depends only on this �nite set of signals,P [spike�t0jI(t < t0)℄ = P [spike�t0℄g(s1; s2; � � � ; sK); (2)where we in
lude the average probability of spiking so that g is dimensionless. If wethink of the 
urrent I(t < t0) as a ve
tor, with one dimension for ea
h time sample,then these �ltered signals are linear proje
tions of this ve
tor.In this formulation, 
hara
terizing the 
omputation done by a neuron means esti-mating the number of relevant stimulus dimensions (K, hopefully mu
h less thanD), identifying the �lters whi
h proje
t into this relevant subspa
e,1 and then 
har-a
terizing the nonlinear fun
tion g(~s). The 
lassi
al per
eptron{like 
ell of neuralnetwork theory has only one relevant dimension and a simple form for g.3 Identifying low{dimensional stru
tureThe idea that neurons might be sensitive only to low{dimensional proje
tions oftheir inputs was developed expli
itly in work on a motion sensitive neuron of the
y visual system [3℄. Rather than looking at the distribution P [spike�t0js(t < t0)℄,with s(t) the input signal (velo
ity of motion a
ross the visual �eld in [3℄), thatwork 
onsidered the distribution of signals 
onditional on the response, P [s(t <t0)jspike�t0℄; these are related by Bayes' rule,P [spike�t0js(t < t0)℄P [spike�t0℄ = P [s(t < t0)jspike�t0℄P [s(t < t0)℄ : (3)1Note that the individual �lters don't really have any meaning; what is meaningful isthe proje
tion operator that is formed by the whole set of these �lters. Put another way,the individual �lters spe
ify both a K{dimensional subspa
e and a 
oordinate system onthis subspa
e, but there is no reason to prefer one 
oordinate system over another.



Within the response 
onditional ensemble P [s(t < t0)jspike�t0℄ we 
an 
omputevarious moments. Thus the spike triggered average stimulus, or reverse 
orrelationfun
tion [4℄, is the �rst momentSTA(�) = Z [ds℄P [s(t < t0)jspike�t0℄s(t0 � �) : (4)We 
an also 
ompute the 
ovarian
e matrix of 
u
tuations around this average,Cspike(�; � 0) = Z [ds℄P [s(t < t0)jspike�t0℄s(t0��)s(t0�� 0)�STA(�)STA(� 0): (5)In the same way that we 
ompare the spike triggered average to some 
onstantaverage level of the signal (whi
h we 
an de�ne to be zero) in the whole experiment,we want to 
ompare the 
ovarian
e matrix Cspike with the 
ovarian
e of the signalaveraged over the whole experiment,Cprior(�; � 0) = Z [ds℄P [s(t < t0)℄s(t0 � �)s(t0 � � 0): (6)Noti
e that all of these 
ovarian
e matri
es are D�D in size. The surprising �nd-ing of [3℄ was that the 
hange in the 
ovarian
e matrix, �C = Cspike � Cprior, hadonly a very small number of nonzero eigenvalues. In fa
t it 
an be shown that ifthe probability of spiking depends on K linear proje
tions of the stimulus as in eq.(2), and if the inputs s(t) are 
hosen from a Gaussian distribution, then the rankof the matrix �C is exa
tly K. Further, the eigenve
tors asso
iated with nonzeroeigenvalues span the relevant subspa
e (up to a rotation asso
iated with the auto-
orrelations in the inputs. Thus eigenvalue analysis of the spike triggered 
ovarian
ematrix gives us a dire
t way to sear
h for a low dimensional linear subspa
e that
aptures the relevant stimulus features.4 The Hodgkin{Huxley modelWe re
all the details of the Hodgkin{Huxley model and note some spe
ial featuresthat guide our analysis. Hodgkin and Huxley [1℄ modeled the dynami
s of the
urrent through a pat
h of membrane by 
ow through ion{spe
i�
 
ondu
tan
es:I(t) = C dVdt + �gKn4 (V � VK) + �gNam3h (V � VNa) + �gl (V � Vl) ; (7)where K and Na subs
ripts denote potassium{ and sodium{related variables, re-spe
tively, and l (for `leakage') terms are a 
at
h-all for other ion spe
ies with slowerdynami
s. C is the membrane 
apa
itan
e. The subs
ripted voltages Vl and VNaare ion-spe
i�
 reversal potentials. �gl, �gK and �gNa are empiri
ally determined max-imal 
ondu
tan
es for the di�erent ions,2 and the gating variables n, m and h (onthe interval [0; 1℄) have their own voltage dependent dynami
s:dn=dt = (0:01V + 0:1)(1� n) exp(�0:1V )� 0:125n exp(V=80)dm=dt = (0:1V + 2:5)(1�m) exp(�0:1V � 1:5)� 4m exp(V=18)dh=dt = 0:07(1� h) exp(0:05V )� h exp(�0:1V � 4); (8)with V in mV and t in mse
.Here we are interested in dynami
 inputs I(t), but it is important to rememberthat for 
onstant inputs the Hodgkin{Huxley model undergoes a Hopf bifur
ationto spike at a 
onstant frequen
y; further, this frequen
y is rather insensitive to thepre
ise value of the input above onset. This `rigidity' of the system is felt also in2We have used the original parameters, with a sign 
hange for voltages: C = 1�F=
m2,�gK = 36mf=
m2, �gNa = 120mf=
m2, �gl = 0:3mf=
m2, VK = �12mV, VNa = +115mV,Vl = +10:613mV. We have taken our system to be a � � 302�m2 pat
h of membrane.



many regimes of dynami
 stimulation, and 
an be thought of as a strong intera
tionamong su

essive spikes. These intera
tions lead to long memory times, re
e
tingthe in�nite phase memory of the periodi
 orbit whi
h exists for 
onstant input.While spike intera
tions are interesting, we want to fo
us on the way that input
urrent modulates the probability of spiking. To separate these e�e
ts we 
onsideronly `isolated' spikes. These are de�ned by a

umulating the interspike intervaldistribution and noti
ing that for some intervals t > t
 the distribution de
aysexponentially, whi
h means that the system has lost memory of the previous spike;thus spikes whi
h are more than t
 after the previous spike are isolated.In what follows we 
onsider the response of the Hodgkin{Huxley model to 
urrentsI(t) with zero mean, 0.275 nA standard deviation, and 0.5 mse
 
orrelation time.5 How many dimensions?Fig. 1 shows the 
hange in 
ovarian
e matrix �C(�; � 0) for isolated spikes in our HHsimulation, and �g. 2(a) shows the resulting spe
trum of eigenvalues as a fun
tionof sample size. The result strongly suggests that there are many fewer than Drelevant dimensions. In parti
ular, there seem to be two outstanding modes; theSTA itself lies largely in the subspa
e of these modes, as shown in Fig. 2(b).
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Figure 1: The isolated spike triggered 
ovarian
e matrix �C(�; � 0).The �lters themselves, shown in �g. 3, have simple forms; in parti
ular the se
ondmode is almost exa
tly the derivative of the �rst. If the neuron �ltered its inputsand generated a spike when the output of the �lter 
rosses threshold, we would�nd that there are two signi�
ant dimensions, 
orresponding to the �lter and itsderivative. It is tempting to suggest, then, that this is a good approximation to theHH model, but we will see that this is not 
orre
t. Noti
e also that both �lters havesigni�
ant di�erentiating 
omponents|the 
ell is not simply integrating its inputs.Although �g. 2(a) suggests that two modes dominate, it also demonstrates that thesmaller nonzero eigenvalues of the other modes are not just noise. The width of anyspe
tral band of eigenvalues near zero due to �nite sampling should de
line within
reasing sample size. However, the smaller eigenvalues seen in �g. 2(a) are stable.Thus while the system is primarily sensitive to two dimensions, there is something
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Figure 2: (a) Convergen
e of the largest 32 eigenvalues of the isolated spike triggered
ovarian
e with in
reasing sample size. (b) Proje
tions of the isolated STA ontothe 
ovarian
e modes.
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Figure 3: Most signi�
ant two modes of the spike-triggered 
ovarian
e.missing in this pi
ture. To quantify this, we must �rst 
hara
terize the nonlinearfun
tion g(s1; s2).6 Nonlinearity and informationAt ea
h instant of time we 
an �nd the relevant proje
tions of the stimulus s1 ands2. By 
onstru
tion, the distribution of these signals over the whole experiment,P (s1; s2), is Gaussian. On the other hand, ea
h time we see a spike we get a samplefrom the distribution P (s1; s2jspike�t0), leading to the pi
ture in �g. 4. The priorand spike 
onditional distributions 
learly are better separated in two dimensionsthan in one, whi
h means that our two dimensional des
ription 
aptures more thanthe spike triggered average. Further, we see that the spike 
onditional distributionis 
urved, unlike what we would expe
t for a simple thresholding devi
e.Combining eq's. (2) and (3), we haveg(s1; s2) = P (s1; s2jspike�t0)P (s1; s2) ; (9)so that these two distributions determine the input/output relation of the neuronin this 2D spa
e. We emphasize that although the subspa
e is linear, g 
an havearbitrary nonlinearity. Fig. 4 shows that this input/output relation has sharpedges, but also some fuzziness. The HH model is deterministi
, so in prin
iple theinput/output relation should be a Æ fun
tion: spikes o

ur only when 
ertain exa
t
onditions are met. Of 
ourse we have blurred things a bit by working at �nite time
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Figure 4: 104 spike-
onditional stimuli proje
ted along the �rst 2 
ovarian
e modes.The 
ir
les represent the 
umulative radial integral of the prior distribution from1; the ring marked 10�4, for example, en
loses 1� 10�4 of the prior.resolution. Given that we work at �nite �t, spikes 
arry only a �nite amount ofinformation, and the quality of our 2D approximation 
an be judged by asking howmu
h of this information is 
aptured by this des
ription.As explained in [5℄, the arrival time of a single spike provides an informationIone spike = *r(t)�r log2 �r(t)�r �+; (10)where r(t) is the time dependent spike rate, �r is the average spike rate, and h� � �idenotes an average over time. With a deterministi
 model like HH, the rate r(t)either is zero or 
orresponds to one spike o

urring in one bin of size �t, that isr = 1=�t. The result is that Ione spike = � log2(�r�t).On the other hand, if the probability of spiking really depends only on the stimulusdimensions s1 and s2, we 
an substituter(t)�r ! P (s1; s2jspike�t)P (s1; s2) ; (11)and use the ergodi
ity of the stimulus to repla
e time averages in Eq. (10). Thenwe �nd [3, 5℄Is1;s2one spike = Z d2sP (s1; s2jspike�t) log2 �P (s1; s2jspike�t)P (s1; s2) � (12)If our two dimensional approximation were exa
t we would �nd Is1;s2one spike = Ione spike;more generally we will �nd Is1;s2one spike � Ione spike, and the fra
tion of the informationwe 
apture measures the quality of the approximation. This fra
tion is plotted in�g. 5 as a fun
tion of time resolution. For 
omparison, we also show the information
aptured by 
onsidering only the stimulus proje
tion along the STA.
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Figure 5: Fra
tion of spike timing information 
aptured by STA (lower 
urve) andproje
tion onto 
ovarian
e modes 1 and 2 (upper 
urve).7 Dis
ussionThe simple, low-dimensional model des
ribed 
aptures a substantial amount ofinformation about spike timing for a HH neuron. The fra
tion is maximal near�t = 5:5mse
, rea
hing nearly 70%. However, the absolute information 
apturedsaturates for both the 1D and 2D 
ases, at � 3:5 and 5 bits respe
tively, for smaller�t. Hen
e the information fra
tion 
aptured plummets; re
overing pre
ise spiketiming requires a more 
omplex, higher dimensional representation of the stimulus.Is this e�e
t important, or is timing at this resolution too noisy for this extra
omplexity to matter in a real neuron? Sto
hasti
 HH simulations have suggestedthat, when realisti
 noise sour
es are taken into a

ount, the timing of spikes inresponse to dynami
 stimuli is reprodu
ible to within 1{2 mse
 [6℄. This suggeststhat su
h timing details may indeed be important.Even in 2D, one 
an observe that the spike 
onditional distribution is 
urved (�g. 4);it is likely to 
urve along other dimensions as well. It may be possible to improve ourapproximation by 
onsidering the 
omputation to take pla
e on a low-dimensionalbut 
urved manifold, instead of a linear subspa
e. The 
urvature in Fig. 4 alsoimplies that the 
omputation in the HH model is not well approximated by anintegrate and �re model, or a per
eptron model limited to linear separations.Chara
terizing the 
omplexity of the 
omputation is an important step towardunderstanding neural systems. How to quantify this 
omplexity theoreti
ally isan area for future work; here, we have made progress toward this goal by des
ribingsu
h 
omputations in a 
ompa
t way and then evaluating the 
ompleteness of thedes
ription using information. The te
hniques presented are appli
able to more
omplex models, and of 
ourse to real neurons. How does the addition of more
hannels in
rease the 
omplexity of the 
omputation? Will this add more relevantdimensions or does the non-linearity 
hange?Referen
es[1℄ A. Hodgkin and A. Huxley. J. Physiol., 117, 1952.[2℄ C. Ko
h. Biophysi
s of 
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. R. So
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k.Neural Comp., 12, 2000.[6℄ E. S
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