What is the neural code?
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What is the neural code?

Encoding: how does a stimulus cause a pattern of responses?

» what are the responses and what are their characteristics?
e neural models:

what takes us from stimulus to response;
descriptive and mechanistic models, and the relation between them.

Decoding: what do these responses tell us about the stimulus?

» Implies some kind of decoding algorithm
» How to evaluate how good our algorithm is?
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spike rate
spike times
spike intervals
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Single cells:
spike rate: what does the firing rate correspond to?

spike times: what in the stimulus triggers a spike?
spike intervals: can patterns of spikes convey extra information?
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Populations of cells:
population coding
correlations between responses
synergy and redundancy



Receptive fields and tuning curves

Tuning curve: r = f(s)

s (orientation angle in degrees)

Gaussian tuning curve of a cortical (V1) neuron



Receptive fields and tuning curves

Tuning curve: r = f(s)
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Cosine tuning curve of a motor cortical neuron



Receptive fields and tuning curves
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Retinal disparity for a “near”
object

Sigmoid/logistic tuning curve of a “stereo” V1 neuron



Higher brain areas represent increasingly complex features

Nr. of spikes

b Uik 1)

Plcture nr.

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)
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More generally, we are interested in determining the relationship:

P(response | stimulus)

P(stimulus | response)

encoding

decoding

Due to noise, this is a stochastic description.

Problem of dimensionality, both in response and in stimulus



Reverse correlation

Fast modulation of firing by
dynamic stimuli

Feature extraction
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Use reverse correlation to decide what each of these spiking events

stands for, and so to either:

-- predict the time-varying firing rate

-- reconstruct the stimulus from the spikes
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Reverse correlation

Basic idea: throw random stimuli at the system and collect the ones
that cause a response

Typically, use Gaussian, white noise stimulus: an unbiased stimulus
which samples all directions equally

r(t) 1] ] ]




Reverse correlation
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Goal: simplify!




Example: a neuron in the ELL of a fish

stimulus = fluctuating potential Spike-triggered Average
(generates electric field)
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This can be done with other dimensions of stimulus as well

Spatio-temporal receptive field

Response I I | |

t —»



Modeling spike encoding

Given a stimulus, when will the system spike?

Decompose the neural computation into a linear stage and a nonlinear stage.

spike-triggering

stimulus feature o _
decision function

stimulus X(t)
spike output Y(t)

|
P(spike|x; )

Simple example: the integrate-and-fire neuron

To what feature in the stimulus is the system sensitive?

Gerstner, spike response model; Aguera y Arcas et al. 2001, 2003; Keat et al., 2001



Modeling spike encoding

spike-triggering

stimulus feature o _
decision function

stimulus X(t)
spike output Y(t)
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e
P(spike|x; )

The decision function is P(spike|x;).
Derive from data using Bayes’ theorem:

P(spike|x,) = P(spike) P(x, | spike) / P(x,)

P(x,) is the prior : the distribution of all projections onto f,
P(x, | spike) is the spike-conditional ensemble :

the distribution of all projections onto f; given there has been a spike
P(spike) is proportional to the mean firing rate



Models of neural function

spike-triggering

stimulus feature o _
decision function

stimulus X(t)
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spike output Y(t)
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Reverse correlation: a geometric view
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Functional models of neural response

spike-triggering stimulus features

multidimensional
decision function

stimulus X(t)

spike output Y(t)




Functional models of neural response

spike-triggering stimulus features

decision function

stimulus X(t)
spike output Y(t)
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Functional models of neural response

spike-triggering

stimulus feature o _
decision function

stimulus X(t)

|
P(spike|x; )
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Covariance analysis

Let’s develop some intuition for how this works: the Keat model

Keat, Reinagel, Reid and Meister, Predicting every spike. Neuron (2001)
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 Spiking is controlled by a single filter

» Spikes happen generally on an upward threshold crossing of
the filtered stimulus

= expect 2 modes, the filter F(t) and its time derivative F’(t)



Covariance analysis
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Covariance analysis

Let’s try a real neuron: rat somatosensory cortex
(Ras Petersen, Mathew Diamond, SISSA)

Record from single units in barrel cortex




Covariance analysis

Spike-triggered average:
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Covariance analysis

Is the neuron simply not very responsive to a white noise stimulus?
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Covariance analysis
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Covariance analysis

Eigenspectrum Leading modes
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Covariance analysis

Input/output
relations wrt
first two filters,
alone:

Normalised firing rate
Normalised firing rate

0 1 -1 0 1 2

Normalised "acceleration"

and in quadrature:

"velocity"
Normalised firing rate

0 2
"acceleration"”




Covariance analysis

How about the other modes?

Next pair with +ve eigenvalues Pair with -ve eigenvalues
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Covariance analysis

Input/output relations for negative pair
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Beyond covariance analysis

1. Single, best filter determined by the first moment
2. Afamily of filters derived using the second moment

3. Use the entire distribution: information theoretic methods

- Find the dimensions that maximize the mutual information
between stimulus and spike

Removes requirement for Gaussian stimuli



Limitations

Not a completely “blind” procedure:
have to have some idea of the appropriate stimulus space

Very complex stimuli:
does a geometrical picture work or make sense?

Rates vs spikes:
what is our model trying to do? What do we want to recover?

Adaptation:
stimulus representations change with experience!



