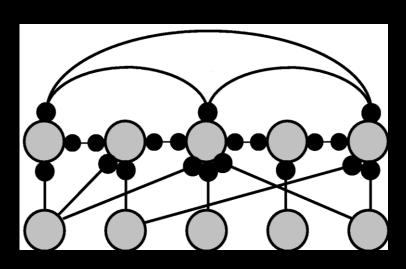
CSE/NB 528

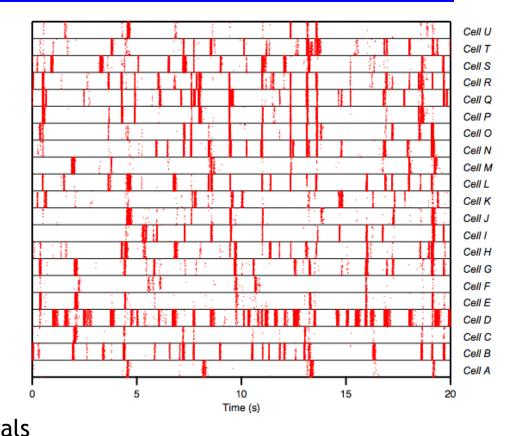
Final Lecture: All Good Things Must...



Course Summary

- Where have we been?
 - Course Highlights
- Where do we go from here?
 - Challenges and Open Problems
- Further Reading

What is the neural code?



What is the nature of the code?
Representing the spiking output:
single cells vs populations
rates vs spike times vs intervals

What features of the stimulus does the neural system represent?

Encoding and decoding neural information

Encoding: building functional models of neurons/neural systems and predicting the spiking output given the stimulus

Decoding: what can we say about the stimulus given what we observe from the neuron or neural population?

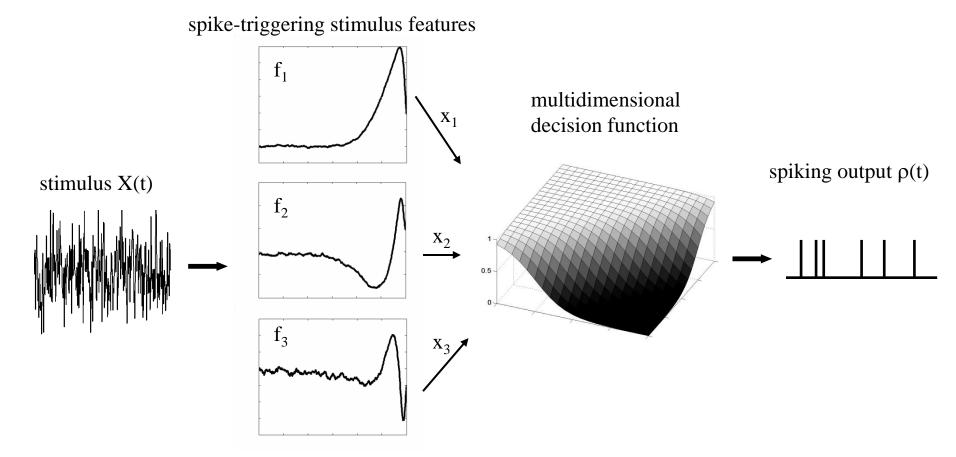
Key concepts: Poisson & Gaussian

Spike trains are variable

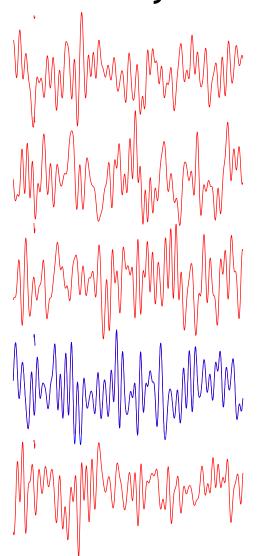
Models are probabilistic

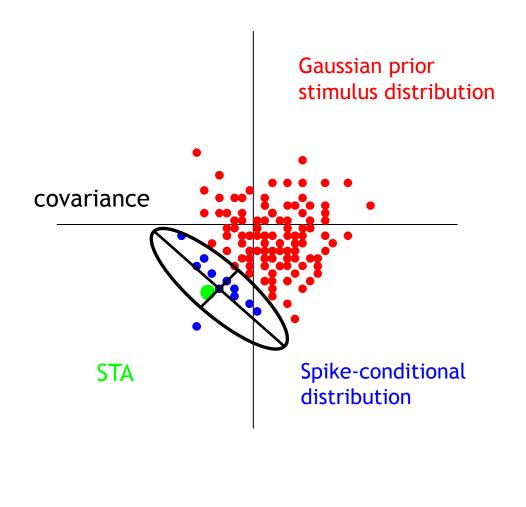
Deviations are close to independent

Highlights: Neural Encoding

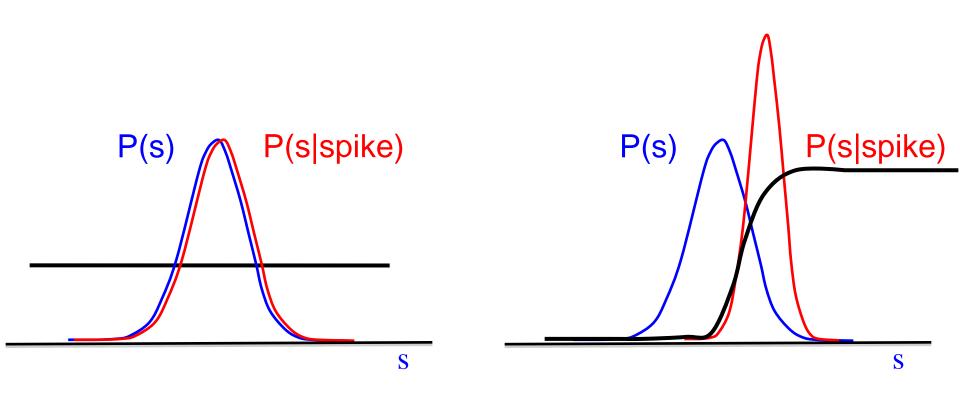


Highlights: Finding the feature space of a neural system

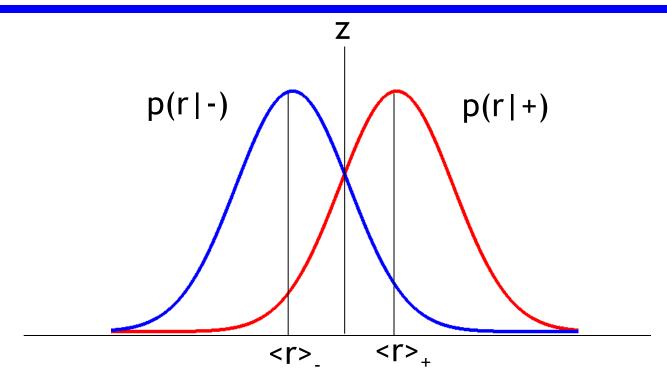




Highlights: Finding an interesting tuning curve



Decoding: Signal detection theory



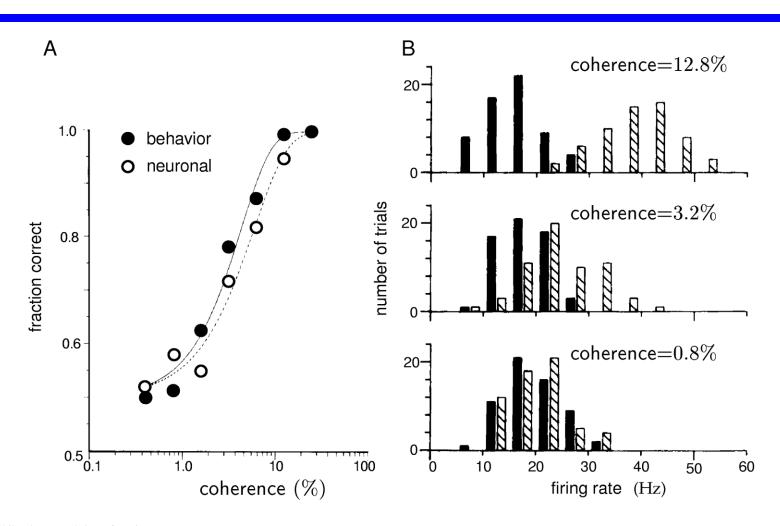
Decoding corresponds to comparing test to threshold.

$$\alpha(z) = P[r \ge z|-]$$

$$\beta(z) = P[r \ge z | +]$$

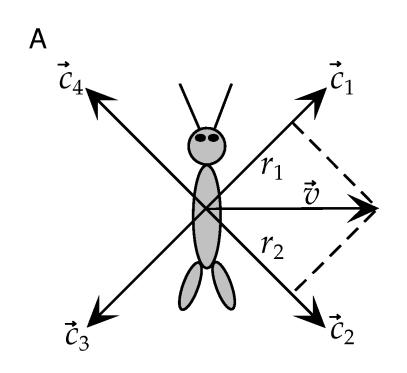
false alarm rate, "size" hit rate, "power"

Highlights: Neurometric curves

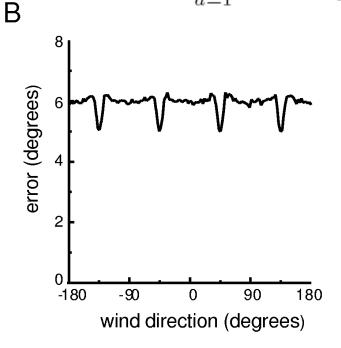


Decoding from a population

e.g. cosine tuning curves



$$\vec{v}_{\text{pop}} = \sum_{a=1}^{4} \left(\frac{r}{r_{\text{max}}} \right)_{a} \vec{c}_{a}$$



RMS error in estimate

Theunissen & Miller, 1991

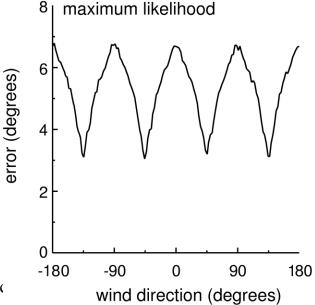
More general approaches: MAP and ML

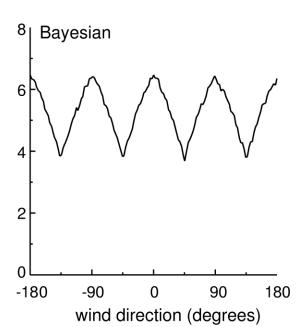
MAP: s* which maximizes p[s|r]

ML: s* which maximizes p[r|s]

Difference is the role of the prior: differ by factor p[s]/p[r]

For cercal data:

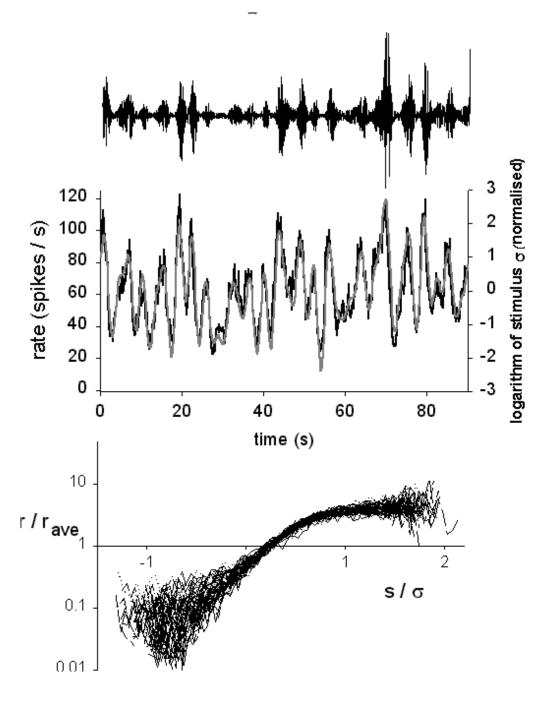




12

CSE/NB 528: Final Lea

Highlights:
Information
maximization
as a design principle
of the nervous
system

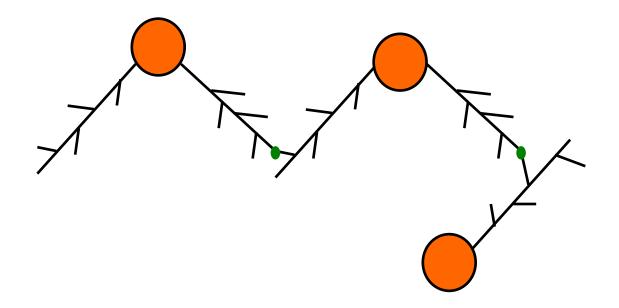


Encoding and decoding neural information

Encoding: building functional models of neurons/neural systems and predicting the spiking output given the stimulus

Decoding: what can we say about the stimulus given what we observe from the neuron or neural population?

The biophysical basis of neural computation

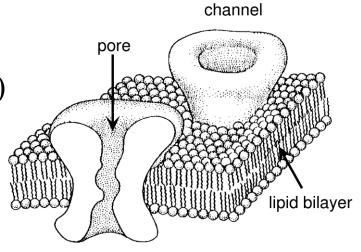


Excitability is due to the properties of ion channels

• Voltage dependent

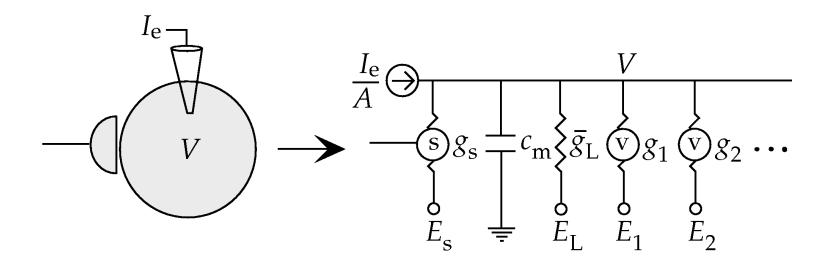
transmitter dependent (synaptic)

• Ca dependent





Highlights: The neural equivalent circuit



Ohm's law: V = IR and Kirchhoff's law

Simplified neural models

A sequence of neural models of increasing complexity that approach the behavior of real neurons

Integrate and fire neuron:

subthreshold, like a passive membrane spiking is due to an imposed threshold at V_T

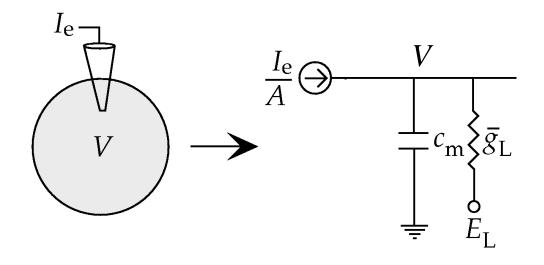
Spike response model:

subthreshold, arbitrary kernel spiking is due to an imposed threshold at V_T postspike, incorporates afterhyperpolarization

Simple model:

complete 2D dynamical system spiking threshold is intrinsic have to include a reset potential

Simplified models: integrate-and-fire

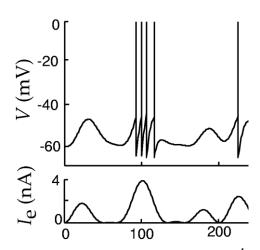


Integrate-and-Fire Model

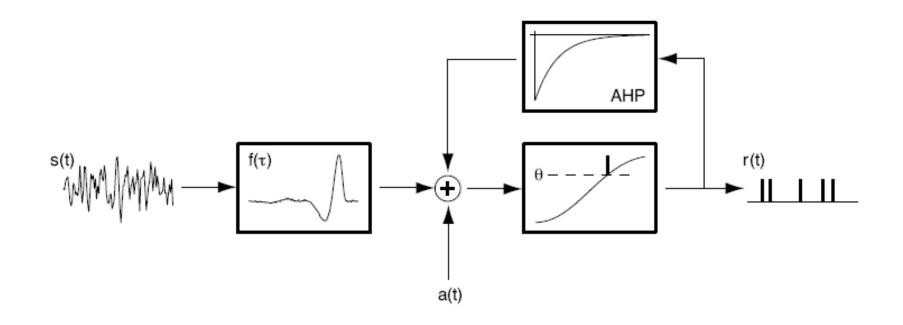
$$\tau_m \frac{dV}{dt} = -(V - E_L) + I_e R_m$$

If $V > V_{threshold} \rightarrow Spike$

Then reset: $V = V_{reset}$



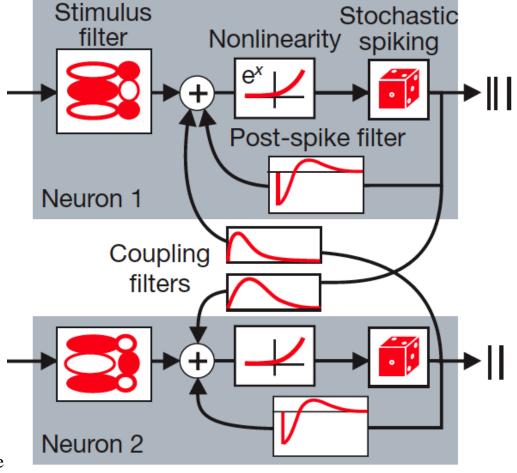
Simplified models: spike response model



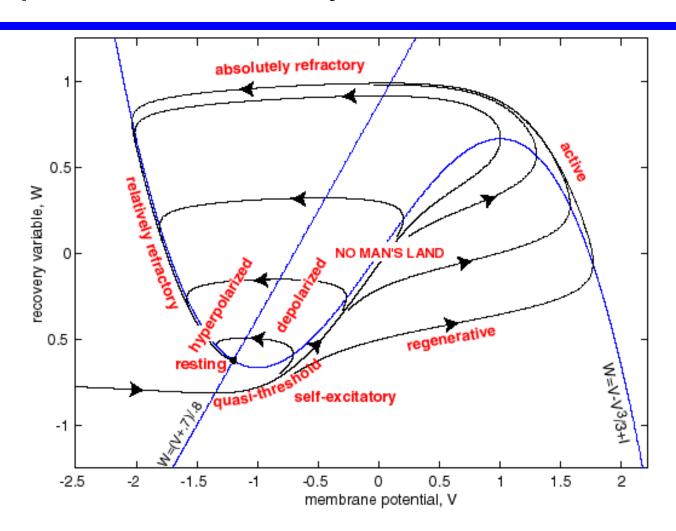
Gerstner; Keat et al. 2001

Simplified models: spike response model

Coupled spiking model

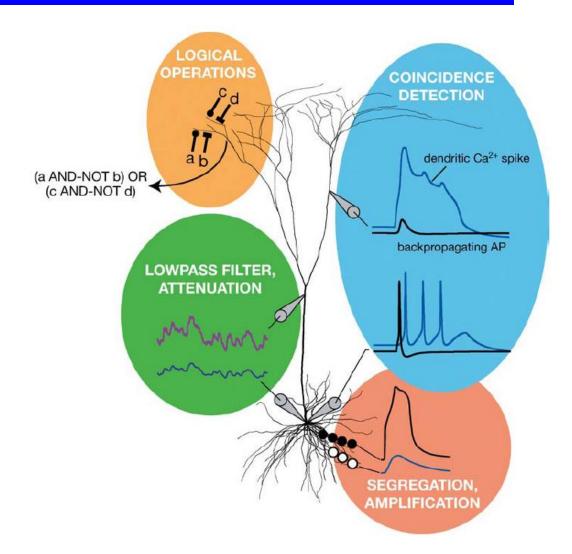


Simplified models: dynamical models



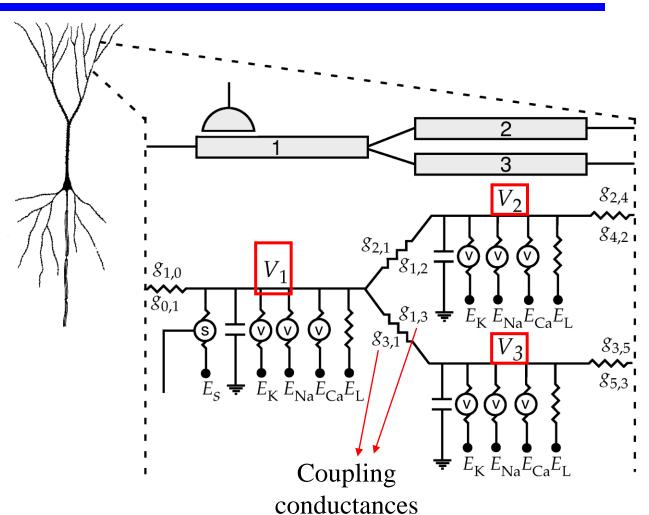
Highlights: Dendritic computation

Filtering
Shunting
Delay lines
Information segregation
Synaptic scaling
Direction selectivity



Highlights: Compartmental models

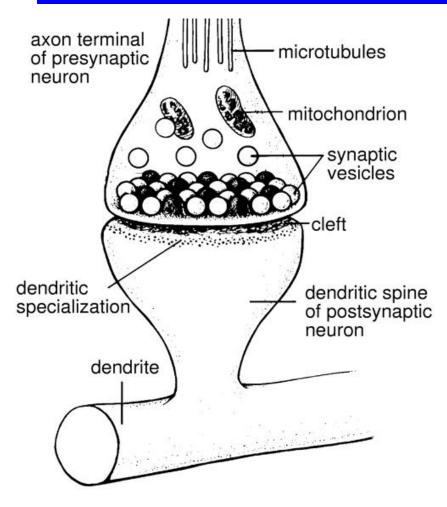
Neuronal structure can be modeled using electrically coupled compartments



CSE/NB 528: Final Lecture

24

Connecting neurons: Synapses



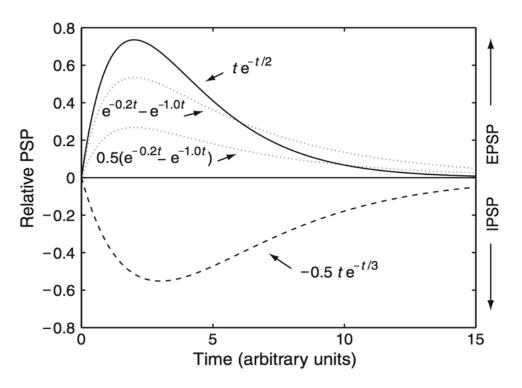
Presynaptic voltage spikes cause neurotransmitter to cross the cleft, triggering postsynaptic receptors allowing ions to flow in, changing postsynaptic potential

Glutamate: excitatory

GABA_A: inhibitory

CSE/NB 528: Final Lecture

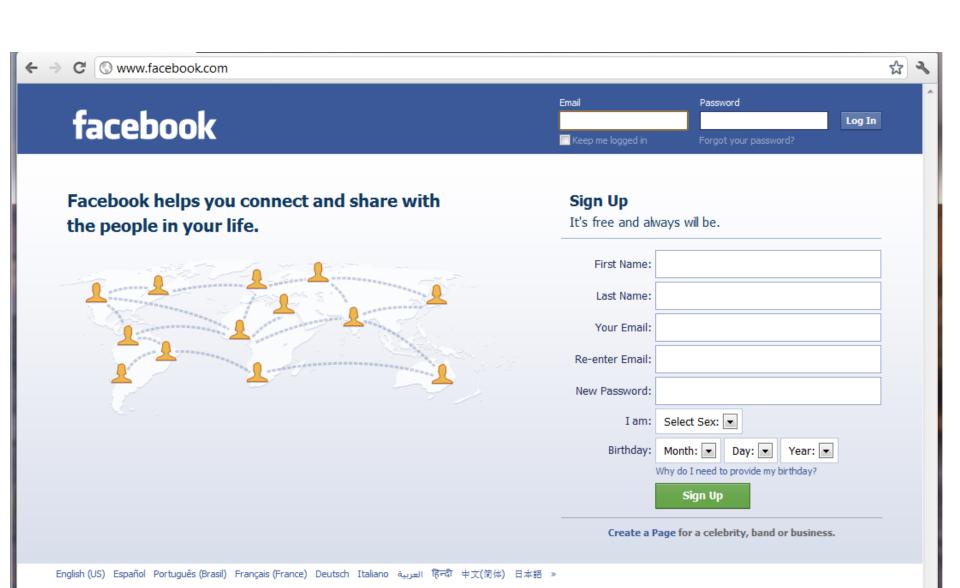
Synaptic voltage changes



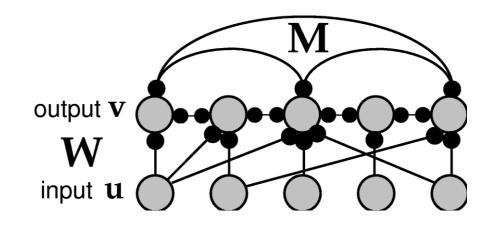
Size of the PSP is a measure of synaptic strength.

Can vary on the short term due to input history on the long term due to synaptic plasticity .. one way to build circuits that learn

Networks



Modeling Networks of Neurons



$$\tau \frac{d\mathbf{v}}{dt} = -\mathbf{v} + F(\mathbf{W}\mathbf{u} + \mathbf{M}\mathbf{v})$$

Output

Decay

Input Feedback

Highlights: Unsupervised Learning

- For linear neuron: $v = \mathbf{w}^T \mathbf{u} = \mathbf{u}^T \mathbf{w}$
- Basic Hebb Rule: $\tau_w \frac{d\mathbf{w}}{dt} = \mathbf{u}v$

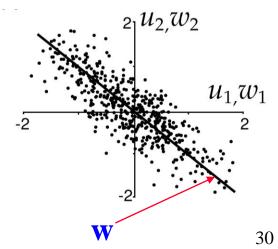
Average effect over many inputs:

$$\tau_{w} \frac{d\mathbf{w}}{dt} = \langle \mathbf{u} v \rangle = Q\mathbf{w}$$

Q is the input correlation matrix:

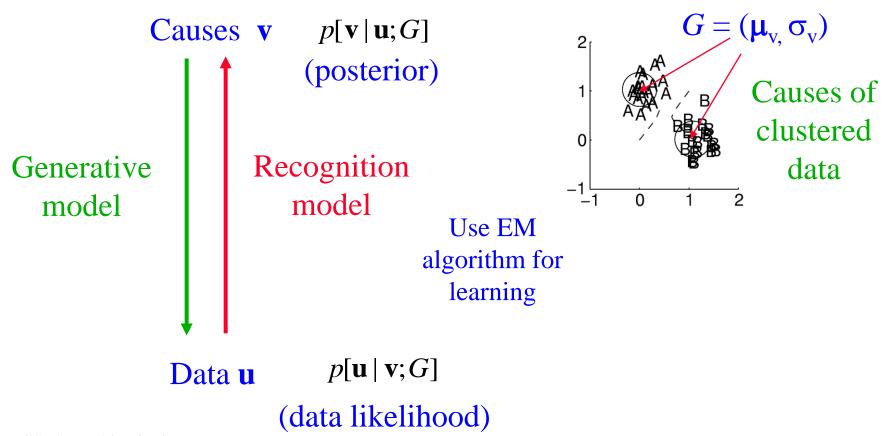
$$Q = \langle \mathbf{u}\mathbf{u}^T \rangle$$

Hebb rule performs principal component analysis (PCA)

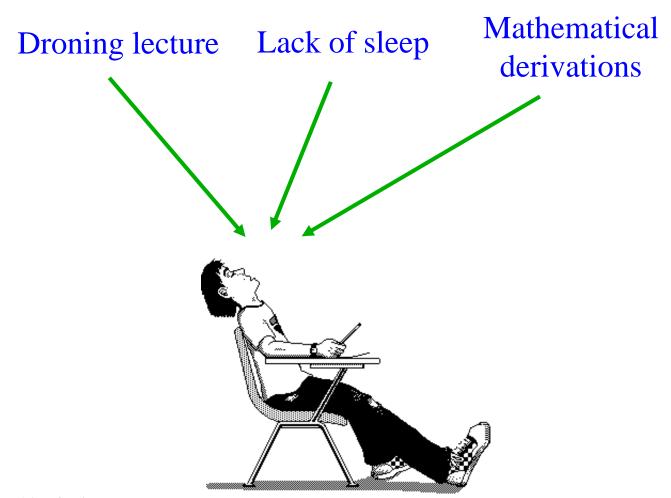


Highlights: The Connection to Statistics

<u>Unsupervised learning</u> = learning the *hidden causes* of input data

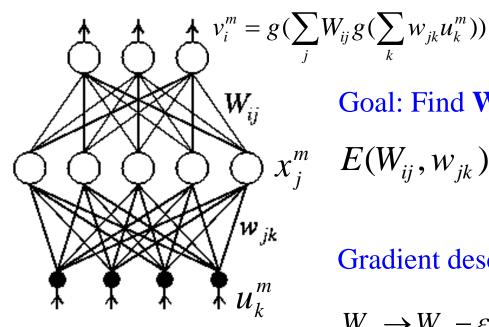


Highlights: Generative Models



Highlights: Supervised Learning

Backpropagation for Multilayered Networks



Goal: Find W and w that minimize errors:

$$\chi_j^m \quad E(W_{ij}, w_{jk}) = \frac{1}{2} \sum_{m,i} (d_i^m - v_i^m)^2$$
Desired output

Gradient descent learning rules:

$$W_{ij} \to W_{ij} - \varepsilon \frac{\partial E}{\partial W_{ij}}$$
 (Delta rule)

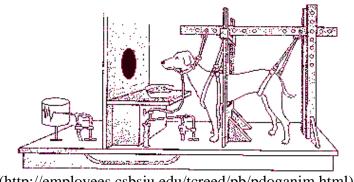
$$w_{jk} \to w_{jk} - \varepsilon \frac{\partial E}{\partial w_{jk}} = w_{jk} - \varepsilon \frac{\partial E}{\partial x_j^m} \cdot \frac{\partial x_j^m}{\partial w_{jk}}$$
 (Chain rule)

Highlights: Reinforcement Learning

Learning to predict rewards:

$$w \rightarrow w + \varepsilon (r - v)u$$

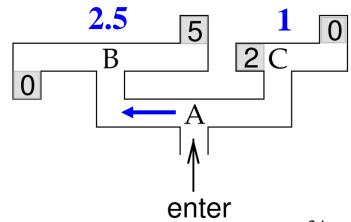
 Learning to predict delayed rewards (TD learning):



(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)

$$w(\tau) \rightarrow w(\tau) + \varepsilon [r(t) + v(t+1) - v(t)] u(t-\tau)$$

- Actor-Critic Learning:
 - Critic learns value of each state using TD learning
 - Actor learns best actions based on value of next state (using the TD error)

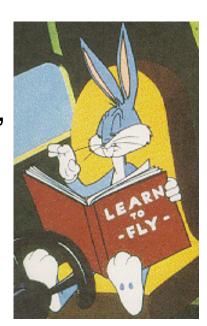


The Future: Challenges and Open Problems

- How do neurons encode information?
 - Topics: Synchrony, Spike-timing based learning, Dynamic synapses
- Does a neuron's structure confer computational advantages?
 - Topics: Role of channel dynamics, dendrites, plasticity in channels and their density
- How do networks implement computational principles such as efficient coding and Bayesian inference?
- How do networks learn "optimal" representations of their environment and engage in purposeful behavior?
 - Topics: Unsupervised/reinforcement/imitation learning

Further Reading (for the summer and beyond)

- Spikes: Exploring the Neural Code, F. Rieke et al., MIT Press, 1997
- The Biophysics of Computation, C. Koch, Oxford University Press, 1999
- Large-Scale Neuronal Theories of the Brain,
 C. Koch and J. L. Davis, MIT Press, 1994
- Probabilistic Models of the Brain, R. Rao et al., MIT Press, 2002
- Bayesian Brain, K. Doya et al., MIT Press, 2007
- Reinforcement Learning: An Introduction, R. Sutton and A. Barto, MIT Press, 1998



Next meeting: Project presentations!

- Project presentations will be on Thursday, June 9
 (10:30am-12:20pm) in the same classroom
- Keep your presentation short: ~6-8 slides, 8 mins/group
- Slides:
 - Bring your slides on a USB stick to use the class laptop (Apple)

OR

- Bring your own laptop if you have videos etc.
- Projects reports (10-15 pages total) due June 9 (by email to both Adrienne and Raj before midnight)

