Introduction to correlated spiking in neural coding and dynamics

Eric Shea-Brown
U. Washington

amath.washington.edu/~etsb

What do we mean by correlation?

Cross-correlation function $\mathrm{C}(\mathrm{t})$

What do we mean by correlation?

What do we mean by correlation?

What do we mean by correlation?

What do we mean by correlation?

$\rho_{\mathbf{T}}=\frac{\operatorname{Cov}\left(n_{1} n_{2}\right)}{\sqrt{\operatorname{Var}\left(n_{1}\right) \operatorname{Var}\left(n_{2}\right)}}$

What do we mean by correlation?

Why the correlations? $\quad p\left(n_{1}, n_{2}\right) \neq p\left(n_{1}\right) p\left(n_{2}\right)$

Common signal input \rightarrow Common spike response \rightarrow SIGNAL CORRELATIONS

ADDITIONAL "NETWORK-DRIVEN" CORRELATIONS

 ARE ...NOISE CORRELATIONS
$p\left(n_{1}, n_{2} \mid s(t)\right) \neq p\left(n_{1} \mid s(t)\right) p\left(n_{2} \mid s(t)\right)$

We'll focus on noise correlations.

OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding

(a) Homogeneous populations

Impact on signal propagation

BASIC MECHANISMS FOR CORRELATED SPIKING

BEYOND CELL-PAIRS: HIGHER-ORDER CORRELATIONS

Response Variability $\quad\left|\begin{array}{l}\text { Rariable spike } \\ \text { count introduces } \\ \text { ambiguity. }\end{array}\right|$

Population codes - average over M independent cells

RATE $\mathrm{v}=\frac{1}{T M} \sum_{i=1}^{M} n_{i}$

$$
\begin{aligned}
\langle\nu\rangle & =\frac{1}{T M} \sum_{i}^{M}\left\langle n_{i}\right\rangle \\
& =\frac{1}{T M} M r T=r
\end{aligned}
$$

M cells
n_{i} spikes each
in time window T

$$
\begin{aligned}
\operatorname{var}(\nu) & =\frac{1}{T^{2} M^{2}} \sum_{i}^{M} \operatorname{var}\left(n_{i}\right) \\
& =\frac{1}{T^{2} M^{2}} M r T \sim \frac{1}{M} r
\end{aligned}
$$

RATE $v=\frac{1}{T M} \sum_{i=1}^{M} n_{i}$

$\begin{aligned}\langle\nu\rangle & =\frac{1}{T M} \sum_{i}^{M}\left\langle n_{i}\right\rangle \\ & =\frac{1}{T M} M r T=r\end{aligned}$
M cells
$\boldsymbol{n}_{\boldsymbol{i}}$ spikes each in time window T

$$
\operatorname{var}(\nu)=\frac{1}{T^{2} M^{2}} \sum_{i}^{M} \operatorname{var}\left(n_{i}\right)
$$

$\frac{\langle\nu\rangle}{\operatorname{var}(\nu)}=\operatorname{SNR}(\nu) \sim M$
$=\frac{1}{T^{2} M^{2}} M r T \sim \frac{1}{M} r$

Population codes - average over M independent cells

RATE $v=\frac{1}{T M} \sum_{i=1}^{M} n_{i}$

$\langle\nu\rangle=\frac{1}{T M} \sum_{i}^{M}\left\langle n_{i}\right\rangle$
$=\frac{1}{T M} M r T=r$
Population averaging improves SNR.
$\frac{\langle\nu\rangle}{\operatorname{var}(\nu)}=S N R(\nu) \sim M$

RATE $v=\frac{1}{T M} \sum_{i=1}^{M} n_{i}$
$\langle\nu\rangle=\frac{1}{T M} \sum_{i}^{M}\left\langle n_{i}\right\rangle$
$=\frac{1}{T M} M r T=r$

M cells
n_{i} spikes each
in time window T
n_{i} have correlation coefficient ρ

RATE $v=\frac{1}{T M} \sum_{i=1}^{M} n_{i}$
$\langle\nu\rangle=\frac{1}{T M} \sum_{i}^{M}\left\langle n_{i}\right\rangle$
$=\frac{1}{T M} M r T=r$
$\frac{\langle\nu\rangle}{\operatorname{var}(\nu)}=S N R(\nu) \sim \frac{1}{\rho}$

M cells
n_{i} spikes each
in time window T
n_{i} have correlation coefficient ρ

$$
\begin{aligned}
& \operatorname{var}(\nu)= \\
& \frac{1}{T^{2} M^{2}}\left(\sum_{i}^{M} \operatorname{var}\left(n_{i}\right)+\sum_{i \neq j} \operatorname{cov}\left(n_{i}, n_{j}\right)\right) \\
& \sim \frac{1}{T^{2} M^{2}} M^{2} r T \rho \sim \rho
\end{aligned}
$$

RATE $v=\frac{1}{T M} \sum_{i=1}^{M} n_{i}$
$\langle\nu\rangle=\frac{1}{T M} \sum_{i}^{M}\left\langle n_{i}\right\rangle$
$=\frac{1}{T M} M r T=r$
$\frac{\langle\nu\rangle}{\operatorname{var}(\nu)}=S N R(\nu) \sim \frac{1}{\rho}$

M cells
n_{i} spikes each
in time window T
n_{i} have correlation coefficient ρ
Zohary, Shadlen and Newsome (1994)

OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding

(a) Homogeneous populations: limits population averaging / degrades info
(b) Heterogeneous cell pairs ...

Consider discriminating two nearby stimuli

For one neuron:
$p_{1}(n)$: response n under stimulus 1
$p_{2}(n)$: response n under stimulus 2

Decode ... via (optimal) maximum likelihood discrimination

Choose stim_1

Neuron, Vol. 38, 649-657, May 22, 2003, Copyright ≈ 2003 by Cell Press

Correlated Neuronal Discharges that Increase Coding Efficiency during Perceptual Discrimination

Ranulfo Romo, ${ }^{1, *}$ Adrián Hernández,
Antonio Zainos, ${ }^{1}$ and Emilio Salinas ${ }^{2}$
Antonio Zainos, and Emilio

OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding

(a) Homogeneous populations: limits population averaging / degrades info
(b) Heterogeneous cell pairs ...
\square similar stimulus tuning: DEGRADE CODING different stimulus tuning: ENHANCE CODING

Tuning curves [e.g Hubel+Wiesel, '60s]	
$\begin{aligned} & \dot{\Delta} \Delta \\ & \Delta \Delta \Delta \\ & \Delta \Delta \Delta \Delta \end{aligned}$	$$ Each neuron i fires spike count $n_{i}=f_{i}(x)+\eta_{i}(x)$ Fisher Information $I_{F}(x)=\left\langle\frac{d^{2}}{d x^{2}} \log P[\mathbf{n} \mid x]\right\rangle$

Implications: Tuning curves [e.g Hubel+Wiesel, '60s]

Stimulus x
Task: given n, estimate x
minnum n_{3}

Cramér-Rao Bound:

$$
(\text { Estimation error })^{2} \geq \frac{1}{I_{\text {FISHER }}}
$$

Each neuron i fires spike count $n_{i}=f_{i}(x)+\eta_{i}(x)$
Fisher Information

$$
I_{F}=\left\langle\left(\frac{d}{d x} \log \dot{P}(n \mid x)\right)^{2}\right\rangle
$$

[Somplinsky et al
Take η_{i} gaussian with: $Q_{i, j}=\delta_{i, j} v+\left(1-\delta_{i, j}\right) c \exp (-\alpha|i-j|) v$
Interpret: positive correlations for "nearby" cells

... and nearby cells have positive signal correlations

.. so, expect presence of correlations to DECREASE information

Averbeck et al 2006:

CONCLUDE: Here, correlations degrade coding.
In general, degrade OR enhance effect could dominate -- must examine case by case.

OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding

(a) Homogeneous populations: limits population averaging / degrades info
(b) Heterogeneous cell pairs ...
similar stimulus tuning: DEGRADE CODING different stimulus tuning: ENHANCE CODING
(c) Heterogeneous population ... mixed effects

Impact on signal propagation

Correlated variability modulates downstream rates
Salinas and Sejnowski, 2000

std. dev. $\sim(\text { rate } \times \text { corr })^{1 / 2}$

std. dev. $\sim(\text { rate } \times \text { corr })^{1 / 2} \quad$ rate $=\mathbf{f}(\mathbf{s t d}$ dev $)$

What if correlations are stimulus-dependent?

$I_{F I S H E R}(\phi) \sim k+\frac{1}{2}\left[\frac{v^{\prime}(\phi)}{v(\phi)}+\frac{\rho^{\prime}(\phi)}{\rho(\phi}\right]^{2}$

Here, co-tuning of correlations typically INCREASES information for SUMMED outputs!
rate v

correlation ρ

Stimulus-dependent correlations - an example

LETTER
Noise correlations improve response fidelity and stimulus encoding

Jon Cafaro ${ }^{2}$ \& Fred Rieke ${ }^{1,2}$

Stimulus-dependent correlations - an example

Cafaro and Rieke, Nature, 2010

Chen et al., J Phys, 2009

POSITIVE correlations b/w incoming conductances

\rightarrow NEGATIVE correlations b/w incoming currents.

Fluctuations cancel.

Stimulus-dependent correlations - an example

Stimulus

Correlated
adapted from

Stimulus-dependent correlations - an example

Uncorrelated (trial shuffled)
Correlated

Stimulus

Response

$\mathrm{C}_{\mathrm{EI}}(\mathrm{t})$
(cross-correlation between $\mathrm{G}_{\text {exc }}$ and $\mathrm{G}_{\text {inh }}$)
low corr

More neg. corr \rightarrow lower rates / variance

OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding
Impact on signal propagation
Positive correlation sets gain:
Downstream rate \sim upstream rate \mathbf{X} upstream correlation

BASIC MECHANISMS FOR CORRELATED SPIKING

Correlations from common input

Correlations from common input

As in:
Shadlen and Newsome, J. Nsci. '98
Binder and Powers, J. Neurophys. '01
Tetzlaff, Geisel, and Diesmann, Neurocomp. '02
Moreno-Bote et al, Phys. Rev. Lett. '06
Galan et al, J. Nsci. '06
.. and others

Correlations from common input

As in:
Shadlen and Newsome, J. Nsci. '98
Binder and Powers, J. Neurophys. '01
Tetzlaff, Geisel, and Diesmann, Neurocomp. '02
Moreno-Bote et al, Phys. Rev. Lett. '06
Galan et al, J. Nsci. '06
and others

Simplest model
Integrate-and-fire model

Correlations increase with rate
[de la Rocha, Doiron et al '07; Shea-Brown et al '08; Rosenbaum+Josic, '10]

de la Rocha, Doiron et al, Nature '07 Shea-Brown et al, PRL '08

Spike generation and myriad other nonlinearities shape correlated spiking ...
... and can introduce stimulus-dependent correlations.

Spike generation and myriad other nonlinearities shape correlated spiking ...
de la Rocha, Doiron et al, Nature '07 Shea-Brown et al, PRL '08
... and can introduce stimulus-dependent correlations.

Another simple (nonlinear) mechanism

Another simple (nonlinear) mechanism

Recurrent connections: story gets surprising fast ...

e.g. The Asynchronous State in Cortical Circuits

Alfonso Renart, ${ }^{1 *} \ddagger$ Jaime de la Rocha, ${ }^{1,2 *}$ Peter Bartho, ${ }^{1,3}$ Liad Hollender, ${ }^{1}$ Néstor Parga, ${ }^{4}$ Alex Reyes, ${ }^{2}$ Kenneth D. Harris ${ }^{1,5} \dagger$

Suggests big network \rightarrow big correlations?

Main result: no.
 Big network \rightarrow small correlations

SETUP:
N cells / pop.

Firing correlation r
$c=c_{E E}+c_{I I}+2 c_{E I}$

Renart, de la Rocha, Science ' 10

Main result: no.
Big network \rightarrow small correlations

SETUP:
N cells / pop.
Connection proba $\mathrm{p}=0.2$: DENSE
Connection strength $\sim 1 / s q r t(N)$: STRONG

Mechanism: cancellation

$c=c_{E E}+c_{I I}+2 c_{E I}$

Time-integration:

$$
c=c_{E E}+c_{I I}+2 c_{E I} \sim 1 / \sqrt{N}
$$

Mechanism:_cancellation
$c=c_{E E}+c_{I I}+2 c_{E I}$

OUTLINE

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding
Impact on signal propagation

BASIC MECHANISMS FOR CORRELATED SPIKING

Common input \rightarrow rate-dependent correlations
Pooling over correlated population \rightarrow amplification of correlations Recurrent balanced networks \rightarrow cancellation of correlations

BEYOND CELL-PAIRS: HIGHER-ORDER CORRELATIONS

Population-wide spiking dynamics

Graphic:
Shlens, Rieke and Chichilnisky, 2008

Graphic:
Schneidman et al. 2006

Population-wide spiking dynamics

Graphic:
Shlens, Rieke and Chichilnisky, 2008

Schneidman et al. 2006

1001000010

Log-linear probability distribution

$$
x_{j}=\{0,1\}
$$

[Martignon et al, '95; Amari et al, '01; Schneidman et al, '06, Shlens et al, '06, '09, ...]

$$
P\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\frac{1}{Z} \exp \left(\sum_{i} \lambda_{i} x_{i}+\sum_{i, j} \lambda_{i j} x_{i} x_{j}+\sum_{i, j, k} \lambda_{i j k} x_{i} x_{j} x_{k}+\ldots\right)
$$

$\mathbf{2}^{\wedge} \mathbf{N}$ parameters (one for each state) \rightarrow complete description
$\mathrm{N}=100 \rightarrow \mathbf{1 0}^{\wedge} \mathbf{3 0}$ parameters / impossibly complex
Maximum entropy approach:
Choose observables. $f_{n}\left(x_{1}, x_{2}, \cdots, x_{N}\right)$.
Measure their averages: $\left\langle f_{n}\right\rangle$.
max:

$$
H(P)=-\sum_{\{\vec{x} \in S\}} P(\vec{x}) \log P(\vec{x})
$$

Fit λ parameters so $\left\langle f_{n}\right\rangle$ hold but mimimal further assumptions.
Get $P\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\frac{1}{Z} \exp \left(\sum_{n} \lambda_{n} f_{n}\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right)$

Maximum entropy approach:
Choose observables. $f_{n}\left(x_{1}, x_{2}, \cdots, x_{N}\right)$.
[Jaynes et al, '57; Shlens et al, '06, '09, Schneidman et al,
'06, ...]

Measure their averages: $\left\langle f_{n}\right\rangle$.
Fit λ parameters so $\left\langle f_{n}\right\rangle$ hold but mimimal further assumptions.
Get $P\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\frac{1}{Z} \exp \left(\sum_{n} \lambda_{n} f_{n}\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right)$
Choose $\left\{f_{n}\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right\}=\left\{x_{1}, x_{2}, \cdots, x_{1} x_{2}, \cdots\right\}$.
Measure means + second-order moments $\left\langle x_{1}\right\rangle, \cdots,\left\langle x_{1} x_{2}\right\rangle, \cdots$.
Get $P\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\frac{1}{Z} \exp \left(\sum_{i} \lambda_{i} x_{i}+\sum_{i, j} \lambda_{i j} x_{i} x_{j}\right)$
PAIRWISE MAXIMUM-ENTROPY MODEL P_2
Minimal-assumptions model that fits means + pairwise correlations If accurate, declare: no "extra" beyond-pairwise correlations
"Accurate" means small Kullback-Leibler distance from true distribution P

$$
\begin{aligned}
D_{K L}\left(P, P_{2}\right) & \equiv \sum_{\{\vec{x} \in S\}} P(\vec{x}) \log \left(\frac{P(\vec{x})}{P_{2}(\vec{x})}\right) \\
& =H\left(P_{2}\right)-H(P)
\end{aligned}
$$

Choose $\left\{f_{n}\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right\}=\left\{x_{1}, x_{2}, \cdots, x_{1} x_{2}, \cdots\right\}$.
Measure means + second-order moments $\left\langle x_{1}\right\rangle, \cdots,\left\langle x_{1} x_{2}\right\rangle, \cdots$.
Get $P_{2}\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\frac{1}{Z} \exp \left(\sum_{i} \lambda_{i} x_{i}+\sum_{i, j} \lambda_{i j} x_{i} x_{j}\right)$
PAIRWISE MAXIMUM-ENTROPY MODEL \mathbf{P}_{2}
Minimal-assumptions model that fits means + pairwise correlations If accurate, declare: no "extra" beyond-pairwise correlations

SUMMARY

CONSEQUENCES OF CORRELATED SPIKING

Impact on coding
(a) Homogeneous populations: limits population averaging / degrades info
(b) Heterogeneous cell pairs ...
similar stimulus tuning: DEGRADE CODING
different stimulus tuning: ENHANCE CODING
(c) Heterogeneous populations: competing effects

Impact on signal propagation
Correlation sets gain: Downstream rate \sim upstream rate X upstream correlation
Review: Averbeck et al, Nature Rev. Nsci. '06

BASIC MECHANISMS FOR CORRELATED SPIKING

Common input \rightarrow rate-dependent correlations
Pooling over correlated population \rightarrow amplification of correlations
Recurrent balanced networks \rightarrow cancellation of correlations

BEYOND CELL-PAIRS: HIGHER-ORDER CORRELATIONS

Maximum-entropy methods measure via log-linear model
Mixed results for presence and impact on coding

