CSE/NB 528

Lecture 12: Unsupervised Learning and Probability Density Estimation
 (Chapters 8 \& 10)

Today's Agenda: Learning about Learning

\uparrow Hebbian learning and its variants (Covariance, Oja rule)
\Rightarrow Relation to Principal Component Analysis (PCA)

- Unsupervised Learning and Density Estimation
\Rightarrow K-means Clustering and Mixture of Gaussians
\Rightarrow EM algorithm

Flashback: Hebbian Learning

\downarrow Linear neuron: $v=\mathbf{w}^{T} \mathbf{u}=\mathbf{u}^{T} \mathbf{w}$
\uparrow Basic Hebb Rule: $\tau_{w} \frac{d \mathbf{w}}{d t}=\mathbf{u} v \quad$ (or $\mathbf{w} \rightarrow \mathbf{w}+\varepsilon \cdot \mathbf{u} v$)

- What is the average effect of this rule?

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=\langle\mathbf{u} v\rangle_{\mathbf{u}}=\left\langle\mathbf{u} \mathbf{u}^{T} \mathbf{w}\right\rangle_{\mathbf{u}}=\left\langle\mathbf{u} \mathbf{u}^{T}\right\rangle_{\mathbf{u}} \mathbf{w}=Q \mathbf{w}
$$

$\checkmark \mathrm{Q}$ is the input correlation matrix: $Q=\left\langle\mathbf{u u}^{T}\right\rangle$

Variants of Hebb's Rule

\rightarrow Hebb:

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=\mathbf{u} v
$$

Unstable

- Covariance rule:

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=\mathbf{u}(v-\langle v\rangle)
$$

Unstable

- Oja's rule:

$$
\tau_{w} \frac{d \mathbf{w}}{d t}=\mathbf{u} v-\alpha v^{2} \mathbf{w}
$$

Stable $\|\mathbf{w}\| \rightarrow \frac{1}{\sqrt{\alpha}}$

What does the Hebb rule do anyway?

Eigenvector analysis of Hebb rule...

Hebb Rule implements Principal Component Analysis (PCA)!

Pure Hebb	Pure Hebb	Covariance Rule
Input mean $=(0,0)$	Input mean $=(2,2)$	Input mean $=(2,2)$

B

C

Hebb rule rotates weight vector to align with principal
eigenvector of input correlation/covariance matrix (i.e. direction of maximum variance)

What about this data?

PCA does not correctly describe the data

BUT...Input data is made up of two clusters (Gaussians)
\rightarrow two "causes"

Causal Models

- Main goal of unsupervised learning: Learn the "Causes" underlying the input data
- Example: Learn the means and variances of the two Gaussians A and B that generated this data
- Want: Two neurons A and B that learn the means and variances based solely on input data (which are samples from the distribution)

Generative versus Recognition Models

How do we learn the parameters (e.g., mean)?

Idea: Use one neuron to represent one cluster
Find cluster center (mean) by averaging all points in neuron's cluster

How do you find which point belongs to which cluster?

Break it down into 2 subproblems

Suppose you are given the cluster centers c_{i}
Q: how do you assign points to a cluster?

A: for each point p, choose closest c_{i}

Suppose you are given the points in each cluster

Q: how to re-compute each cluster's center?

A: choose c_{i} to be the mean of all the points in that cluster

"K-means" clustering: Example

Randomly initialize the cluster centers (synaptic weights)

"K-means" clustering: Example

"K-means" clustering: Example

Re-estimate cluster centers (adapt synaptic weights)

"K-means" clustering: Example

Result of first iteration

"K-means" clustering: Example

Second iteration

"K-means" clustering: Example

Result of second iteration

R. Rao, 528: Lecture 12

K-means clustering

- Properties
\Rightarrow Will always converge to some solution
\Rightarrow Can be a "local minimum"
- does not always find the global minimum of the overall objective function:

$$
\sum_{\text {clusters } i} \sum_{\text {points } \mathrm{p} \text { in cluster } i}\left\|p-c_{i}\right\|^{2}
$$

K-means and probability density estimation

- Can formalize K-means as probability density estimation
- Model data as a mixture of K Gaussians:

$$
p[\mathbf{u} ; G]=\sum_{j=1}^{K} p[\mathbf{u} \mid j ; G] p[j ; G]
$$

\downarrow Estimate not only means but also covariances

K-means and the EM algorithm

Expectation Maximization (EM) Algorithm overview:
\Rightarrow Initialize K clusters: $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{K}}$ ($\mu_{\mathrm{j}}, \Sigma_{\mathrm{j}}$) and $\mathrm{P}\left(C_{\mathrm{j}}\right)$ for each cluster j

1. Estimate which cluster each data point belongs to

$$
p\left(C_{j} \mid x_{i}\right)
$$

\Longrightarrow Expectation step
2. Re-estimate cluster parameters

$$
\left(\mu_{j}, \Sigma_{j}\right), p\left(C_{j}\right)
$$

\Rightarrow Maximization step
3. Repeat 1 and 2 until convergence

EM algorithm for Mixture of Gaussians

\uparrow E step: Compute probability of membership in cluster based on output of previous $\mathrm{M} \operatorname{step}\left(p\left(x_{i} \mid C_{j}\right)=\operatorname{Gaussian}\left(\mu_{j}, \Sigma_{j}\right)\right)$

$$
p\left(C_{j} \mid x_{i}\right)=\frac{p\left(x_{i} \mid C_{j}\right) \cdot p\left(C_{j}\right)}{p\left(x_{i}\right)}=\frac{p\left(x_{i} \mid C_{j}\right) \cdot p\left(C_{j}\right)}{\sum_{j} p\left(x_{i} \mid C_{j}\right) \cdot p\left(C_{j}\right)}
$$

(Bayes rule)
\uparrow M step: Re-estimate parameters based on output of E step

$$
\mu_{j}=\frac{\sum_{i} p\left(C_{j} \mid x_{i}\right) \cdot x_{i}}{\sum_{i} p\left(C_{j} \mid x_{i}\right)}
$$

$$
\begin{gathered}
\Sigma_{j}=\frac{\sum_{i} p\left(C_{j} \mid x_{i}\right) \cdot\left(x_{i}-\mu_{j}\right) \cdot\left(x_{i}-\mu_{j}\right.}{\sum_{i} p\left(C_{j} \mid x_{i}\right)} \\
\text { (Learn parameters) }
\end{gathered}
$$

$$
p\left(C_{j}\right)=\frac{\sum_{i} p\left(C_{j} \mid x_{i}\right)}{N}
$$

Results from the EM algorithm

R. Rao, 528: Lecture 12

Recall: Generative Models

Instead of clusters, what if data was generated by linear superposition of causes?
(e.g., an image composed of several features, or audio containing several voices)

Linear Generative Model

- Suppose input \mathbf{u} is represented by linear superposition of causes $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ and basis vectors (or "features") \mathbf{g}_{i} :

$$
\mathbf{u}=\sum_{i} \mathbf{g}_{i} v_{i}=G \mathbf{v}
$$

Example: "Eigenfaces"

\downarrow Suppose your basis vectors or "features" \mathbf{g}_{i} are the eigenvectors of input covariance matrix of face images

Linear combination of eigenfaces

Linear Generative Model

- Suppose input \mathbf{u} is represented by linear superposition of causes $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ and basis vectors or "features" \mathbf{g}_{i} :

$$
\mathbf{u}=\sum_{i} \mathbf{g}_{i} v_{i}=G \mathbf{v}
$$

\uparrow Problem: For a set of inputs \mathbf{u}, estimate causes v_{i} for each \mathbf{u} and learn feature vectors \mathbf{g}_{i}
\Rightarrow Suppose number of causes is much lesser than size of input
\uparrow Idea: Find \mathbf{v} and G that minimize reconstruction errors:

$$
E=\frac{1}{2}\left|\mathbf{u}-\sum_{i} \mathbf{g}_{i} v_{i}\right|^{2}=\frac{1}{2}(\mathbf{u}-G \mathbf{v})^{T}(\mathbf{u}-G \mathbf{v})
$$

Probabilistic Interpretation

$\downarrow E$ is the same as the negative log likelihood of data:
Likelihood $=$ Gaussian with mean vector $G \mathbf{v}$ and covariance matrix I (identity matrix)

$$
\begin{aligned}
& p[\mathbf{u} \mid \mathbf{v} ; G]=N(\mathbf{u} ; G \mathbf{v}, I) \\
& E=-\log p[\mathbf{u} \mid \mathbf{v} ; G]=\frac{1}{2}(\mathbf{u}-G \mathbf{v})^{T}(\mathbf{u}-G \mathbf{v})+C
\end{aligned}
$$

Next Class: More on Learning

- Unsupervised learning with linear models: Sparse coding, Predictive coding
- Supervised Learning
- Things to do:
\Rightarrow Finish reading Chapters 8 and 10
\Rightarrow Finish Homework \#3 (due next Friday)
Have a great weekend!
\Rightarrow Work on mini-project

