CSE/NB 528

Lecture 13: From Unsupervised Learning to Supervised Learning (Chapters 8 & 10)

What's on the menu today?

- Unsupervised Learning
 - Sparse coding and Predictive coding

(Copyright, Gary Larson)

"Oh, brother! ... Not hamsters again!"

- Supervised Learning
 - Classification versus Function Approximation/Regression
 - Perceptrons & Learning Rule
 - Linear Separability: Minsky-Papert deliver the bad news
 - Multilayer networks to the rescue
 - Radial Basis Function Networks

Recall: Generative Models for Unsupervised Learning

Example: "Eigenfaces"

Suppose your basis vectors or "features" g_i are the eigenvectors of input covariance matrix of face images

Linear combination of eigenfaces

 ${\bf g}_1 v_1 \ {\bf g}_2 v_2$

Image

Linear Generative Model

Suppose input u was generated by linear superposition of causes v₁, v₂, ..., v_k and basis vectors or "features" g_i:

$$\mathbf{u} = \sum_{i} \mathbf{g}_{i} v_{i} + noise = G\mathbf{v} + noise$$

Problem: For a set of inputs u, estimate causes v_i for each u and learn feature vectors g_i

Suppose number of causes is much lesser than size of input

◆ Idea: Find **v** and *G* that minimize reconstruction errors: $E = \frac{1}{2} \left\| \mathbf{u} - \sum_{i} \mathbf{g}_{i} v_{i} \right\|^{2} = \frac{1}{2} (\mathbf{u} - G\mathbf{v})^{T} (\mathbf{u} - G\mathbf{v})$

R. Rao, 528: Lecture 13

Probabilistic Interpretation

 ★ E is the same as the *negative log likelihood* of data: Likelihood = Gaussian with mean Gv and identity covariance matrix I

$$p[\mathbf{u} | \mathbf{v}; G] = N(\mathbf{u}; G\mathbf{v}, I)$$

$$E = -\log p[\mathbf{u} | \mathbf{v}; G] = \frac{1}{2} (\mathbf{u} - G\mathbf{v})^T (\mathbf{u} - G\mathbf{v}) + C$$

Minimizing error function E is the same as maximizing log likelihood of the data

Bayesian approach

• Would like to maximize posterior: $p[\mathbf{v} | \mathbf{u}; G] \propto p[\mathbf{u} | \mathbf{v}; G] p[\mathbf{v}; G]$

 \bullet Equivalently, find **v** and *G* that maximize:

 $F(\mathbf{v}, G) = \left\langle \log p[\mathbf{u} | \mathbf{v}; G] + \log p[\mathbf{v}; G] \right\rangle$

Prior for causes (what should this be?)

What do we know about the causes **v**?

We would like the causes to be *independent* If cause A and cause B always occur together, then perhaps they should be treated as a single cause AB?

Examples:

- Image: Composed of several independent edges
- Sound: Composed of independent spectral components
- Objects: Composed of several independent parts

What do we know about the causes **v**?

We would like the causes to be *independent*

- ✦ Idea 1: We would like: $p[\mathbf{v};G] = \prod p[v_a;G]$
- Idea 2: If causes are independent, only a few of them will be active for any input
 - $\Rightarrow v_a$ will be 0 most of the time but high for a few inputs
 - \Rightarrow Suggests a sparse distribution for the prior $p[v_a;G]$

Prior Distributions for Causes

 $p[\mathbf{v};G] \propto \prod_{a} \exp(g(v_a))$

Finding the optimal \mathbf{v} and G

Want to maximize:

$$F(\mathbf{v}, G) = \left\langle \log p[\mathbf{u} | \mathbf{v}; G] + \log p[\mathbf{v}; G] \right\rangle$$
$$= \left\langle -\frac{1}{2} (\mathbf{u} - G\mathbf{v})^T (\mathbf{u} - G\mathbf{v}) + \sum_a g(v_a) \right\rangle + K$$

Approximate EM algorithm:

⇒ E step: Maximize F with respect to v keeping G fixed
♦ Set dv/dt ∝ dF/dv ("gradient ascent/hill-climbing")
⇒ M step: Maximize F with respect to G, given the v above
♦ Set dG/dt ∝ dF/dG ("gradient ascent/hill-climbing")
(During implementation, let v converge for each input before changing synaptic weights G)

E Step: Estimating v

Gradient ascent

$$\frac{d\mathbf{v}}{dt} \propto \frac{dF}{d\mathbf{v}} = G^T (\mathbf{u} - G\mathbf{v}) + g'(\mathbf{v})$$

(prediction) of **u**

Reconstruction

$$\tau \frac{d\mathbf{v}}{dt} = G^T (\mathbf{u} - G\mathbf{v}) + g'(\mathbf{v}) \qquad \begin{array}{c} \text{Firing rate dynamics} \\ \text{(Recurrent network)} \\ \text{Sparseness constraint} \end{array}$$

Recurrent network for estimating v

[Suggests a role for feedback pathways in the cortex (Rao & Ballard, 1999)]

M step: Learning the Synaptic Weights G

$$\begin{array}{c} \mathbf{v} \\ \mathbf{G}^{\mathrm{T}} \\ \mathbf{G}^{\mathrm{T}} \\ \mathbf{u} \\ \mathbf{v} \\ \mathbf{$$

Gradient ascent

$$\frac{dG}{dt} \propto \frac{dF}{dG} = (\mathbf{u} - G\mathbf{v})\mathbf{v}^{T}$$

Learning rule

$$\frac{d\mathbf{r}}{dt} \propto \frac{d\mathbf{r}}{dG} = (\mathbf{u} - G\mathbf{v})\mathbf{v}^{T}$$

 $\tau_G \frac{dG}{dt} = (\mathbf{u} - G\mathbf{v})\mathbf{v}^T \qquad \begin{cases} \text{Hebbian!} \\ \text{(similar to Oja's rule)} \end{cases}$

R. Rao, 528: Lecture 13

Result: Learning G for Natural Images

Each square is a column \mathbf{g}_i of G (obtained by collapsing rows of the square into a vector)

Almost all the \mathbf{g}_i represent local edge features

Any image patch **u** can be expressed as:

$$\mathbf{u} = \sum_{i} \mathbf{g}_{i} \mathbf{v}_{i} = G \mathbf{v}$$

R. Rao, 528: Lecture 13

(Olshausen & Field, 1996)

Sparse Coding Network is a special case of Predictive Coding Networks

(See also Chapter 12 in the Anastasio textbook)

Predictive Coding Model of Visual Cortex

R. Rao, 528: Lecture 13

(Rao & Ballard, Nature Neurosci., 1999)

Predictive coding model explains contextual effects

Monkey Primary Visual Cortex

(Zipser et al., J. Neurosci., 1996)

(Rao & Ballard, Nature Neurosci., 1999)

Model

Contextual effects arise from Natural Image properties

(Rao & Ballard, Nature Neurosci., 1999)

What if your data comes with not just inputs but also outputs?

Enter...Supervised Learning

R. Rao, 528: Lecture 13

Example: Supervised Learning for Face Detection

Can we learn a network to distinguish faces from other objects?

R. Rao, 528: Lecture 13

The Classification Problem

- denotes output of +1 (faces)
- denotes output of -1 (other)

Idea: Find a separating hyperplane (line in this case)

Supervised Learning

Two Primary Tasks

- **1. Classification**
 - Inputs $u_1, u_2, ..., and discrete classes <math>C_1, C_2, ..., C_k$
 - Training examples: $(u_1, C_2), (u_2, C_7)$, etc.
 - Learn the mapping from an arbitrary input to its class
 - Example: Inputs = images, output classes = face, not a face

2. Function Approximation (Regression)

- Inputs u_1, u_2, \ldots and continuous outputs v_1, v_2, \ldots
- Training examples: (input, desired output) pairs
- Learn to map an arbitrary input to its corresponding output
- Example: Highway driving
 Input = road image, output = steering angle

Classification using "Perceptrons"

- Fancy name for a type of layered feedforward networks
- Uses artificial neurons ("units") with binary inputs and outputs

Single-layer

Multilayer

Perceptrons use "Threshold Units"

- Artificial neuron:
 - \Rightarrow m binary inputs (-1 or 1) and 1 output (-1 or 1)
 - \Rightarrow Synaptic weights w_{ij}
 - \Rightarrow Threshold μ_i

$$v_i = \Theta(\sum_j w_{ij}u_j - \mu_i)$$

 $\Theta(x) = +1$ if $x \ge 0$ and -1 if x < 0

What does a Perceptron compute?

Consider a single-layer perceptron

⇔ Weighted sum forms a *linear hyperplane (line, plane, ...)*

$$\sum_{j} w_{ij} u_{j} - \mu_{i} = 0$$

Everything on one side of hyperplane is in class 1 (output = +1) and everything on other side is class 2 (output = -1)

Any function that is linearly separable can be computed by <u>a perceptron</u>

Linear Separability

◆ Example: AND function is linearly separable
⇒ a AND b = 1 if and only if a = 1 and b = 1

Perceptron Learning Rule

- Given inputs **u** and desired output v^d, adjust **w** as follows:
 - 1. Compute error signal $e = (v^d v)$ where v is the current output
 - 2. Change weights according to the error:

$$\mathbf{W} \rightarrow \mathbf{W} + \mathcal{E}(v^d - v)\mathbf{U}$$
 $A \rightarrow B$ means replace A with B

⇒ E.g., for positive inputs, this increases weights if error is positive and decreases weights if error is negative (opposite for negative inputs)

What about the XOR function?

Can a straight line separate the +1 outputs from the -1 outputs?

Linear Inseparability

 Single-layer perceptron with threshold units fails if classification task is not linearly separable
 Example: XOR

◇ No single line can separate the "yes" (+1) outputs from the "no" (-1) outputs!

 Minsky and Papert's book showing such negative results put a damper on neural networks research for over a decade!

How do we deal with linear inseparability?

R. Rao, 528: Lecture 13

Multilayer Perceptrons

Removes limitations of single-layer networks Can solve XOR

An example of a two-layer perceptron that computes XOR

• Output is +1 if and only if $x + y + 2\Theta(-x - y - 1.5) > -1$ R. Rao, 528: Lecture 13 (Inputs x and y can be +1 or -1)

33

What if you want to approximate a *continuous* function?

Can a network learn to drive?

R. Rao, 528: Lecture 13

Input $\mathbf{u} = [u_1 \ u_2 \ \dots \ u_{960}] = \text{image pixels}$

Function Approximation

We want networks that can <u>learn a function</u>
 Network maps real-valued inputs to real-valued outputs
 Want to generalize to predict outputs for new inputs
 <u>Idea</u>: Given input data, map input to desired output by *adapting weights*

Example: Radial Basis Function (RBF) Networks

input nodes

R. Rao, 528: Lecture 13

Radial Basis Function Networks

input nodes R. Rao, 528: Lecture 13

Radial Basis Function Networks

output neurons

output of network: $\int \text{out}_{j} = \sum_{i} v_{i,j} h_{i}$

- Main Idea: Use a mixture of Gaussian functions h_i to approximate the output
- Gaussians are called "basis functions"

input nodes R. Rao, 528: Lecture 13

RBF networks

- Each hidden unit stores a mean (in its weights) and a variance
- Each hidden unit computes a Gaussian function of input x
- Can derive learning rules for output weights v_i, means w_i, and variances σ²_i by minimizing squared output error function (via gradient descent learning)
- See <u>http://en.wikipedia.org/wiki/Radial basis function network</u> for more details and links.

Next Class: Backpropagation and Reinforcement Learning

- Things to do:
 - ⇔ Read Chapter 9
 - ⇒ Finish Homework 3 (due Friday, May 20)
 - ⇔ Work on group project

