CSE/NB 528
Lecture 13: From Unsupervised Learning to

Supervised Learning
(Chapters 8 & 10)




What’s on the menu today?

4+ Unsupervised Learning
< Sparse coding and
Predictive coding

(Copyright, Gary Larson)

“Oh, brother! . . . Not hamsters againi”

4+ Supervised Learning
< Classification versus Function Approximation/Regression
< Perceptrons & Learning Rule
< Linear Separability: Minsky-Papert deliver the bad news
< Multilayer networks to the rescue
< Radial Basis Function Networks
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Recall: Generative Models for Unsupervised Learning

Causes Vv

Generative
model

Data u
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Suppose input u was
generated by a linear
superposition of
causes vV, V,, ..., v
with basis vectors (or
“features”) g

u=> g, +noise
i

(e.g., an image composed
of several features, or
audio containing several
voices) 3



Example: “Eigenfaces”

4+ Suppose your basis vectors or “features” g; are the
eigenvectors of input covariance matrix of face images
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Linear combination of eigenfaces
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Linear Generative Model

4+ Suppose input u was generated by linear superposition of
causes V4, V,, ..., v, and basis vectors or “features” g;:

U= > g, +noise = Gv + noise
i

4+ Problem: For a set of inputs u, estimate causes v; for each u
and learn feature vectors g
< Suppose number of causes is much lesser than size of input

4+ ldea: Find v and G that minimize reconstruction errors:

U_Zgivi
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Probabilistic Interpretation

+ E is the same as the negative log likelihood of data:
Likelihood = Gaussian with mean Gv and identity
covariance matrix |

p[u|Vv;G]=N(u;Gv,I)
E =—log p[u|v;G]:%(u—Gv)T(u—Gv)+C

Minimizing error function E iIs the same as
maximizing log likelihood of the data
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Bayesian approach

+ Would like to maximize posterior:
plv|u;G]oc plu]v;G]plv;G]

+ Equivalently, find v and G that maximize:

F(v,G) =(log p[u]| v;G]+log p[v;G])

/

Prior for causes (what should this be?)
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What do we know about the causes v?

+ We would like the causes to be independent
< If cause A and cause B always occur together, then perhaps
they should be treated as a single cause AB?

+ Examples:
< Image: Composed of several independent edges
< Sound: Composed of independent spectral components
< Objects: Composed of several independent parts
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What do we know about the causes v?

+ We would like the causes to be independent
+ ldea 1: We would like: p[v;G]l=] | plv,;G]

4+ ldea 2: If causes are independent, only a few of them will be
active for any input

< v, will be 0 most of the time but high for a few inputs
< Suggests a sparse distribution for the prior p[v,;G]
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Prior Distributions for Causes

Spikes in area I'T in Possible prior Log prior
monkey viewing TV distributions
A B C . gw=-lv
exponential
. A sparse
510 ) o X
g 10 —log(1+Vv?)
510> 4 Cauchy
109 5 0 5
spike count v
plv;G] e | [exp(g(v,))
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Finding the optimal v and G

4+ Want to maximize:

F(v,G) =(log p[u|v;G]+log p[v;G])
:<—%(U—GV)T(U—Gv)+Zg(va)>+K

+ Approximate EM algorithm:
< E step: Maximize F with respect to v keeping G fixed
» Set dv/dt oc dF/dv (“gradient ascent/hill-climbing”)
< M step: Maximize F with respect to G, given the v above
» Set dG/dt o« dF/dG (“gradient ascent/hill-climbing’)

(During implementation, let v converge for each input
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E Step: Estimating v

Gradient dv dF '
et e =G (U=GV)+g'(V)

Reconstruction
(prediction) of u

dv . : Firing rate dynamics
v dt =G (u _TGV) +0 T(V) (Recurrent network)

Error  Sparseness constraint
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Recurrent network for estimating v

rz—\t/ =G ' (U-GVv)+g'(V)

Correction Y

G A

Error (U—GV) u

\LG

GV Prediction

[Suggests a role for feedback pathways in the cortex (Rao & Ballard, 1999)]
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M step: Learning the Synaptic Weights G

\ %

G'A

Error (U—GV) u

\LG

GV Prediction

Gradient dG o dF
ascent dt dG

=(U-Gv)V'

Learning dG T Hebbian!
rule e E =(U-Gv)v } (stmilar to Oja’s rule)
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Result: Learning G for Natural Images

HENSEASNENSNE = square is a column
IIIHIHIIIH!I g; of G (obtained by

collapsing rows of the
square into a vector)

Almost all the g;
represent local edge
features

Any image patch u

l.ﬂ.i.“'ﬂ!.. can be expressed as:
SEEEREERRONE > gy =Gy
HE SN EE
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Sparse Coding Network Is a special case of
Predictive Coding Networks

Feedforward
Error Signal

y

Predictive
it HQ—? Estimator

Prediction
(Feedback)  (Rao, Vision Research, 1999)

Sensory Feedforward
Error Gain > Synapses
Error/ G ur
Internal
Recurrent = .
IIlpllt —>® Synapses r Representation
A \4 (Neural
— Responses)
Synapses —
U Prediction

(See also Chapter 12 in the Anastasio textbook)



Predictive Coding Model of Visual Cortex

LGN V1 V2

[
X

Feedforward

Error Signal Error Signal Error Signal
—

\4

I " Predictive Predictive
—> % ) ) .
e = Estimator Estimator

Prediction Prediction Prediction
(Feedback)
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Predictive coding model explains contextual effects

Monkey Primary Visual Cortex Model
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What If your data comes with not just inputs but
also outputs?

Enter...Supervised Learning
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Example: Supervised Learning for Face Detection

Can we learn a network to distinguish
faces from other objects?

R. Rao, 528: Lecture 13



The Classification Problem

e denotes output of +1 (faces)

Faces

o denotes output of -1 (other)

Other objects

Idea: Find a separating hyperplane (line in this case)
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Supervised Learning

+ Two Primary Tasks

1. Classification
» Inputsuy, U,, ... and discrete classes Cy, C,, ..., C,
» Training examples: (u,, C,), (u,, C,), etc.
» Learn the mapping from an arbitrary input to its class
» Example: Inputs = images, output classes = face, not a face

2. Function Approximation (Regression)
» Inputsuy, U,, ... and continuous outputs vy, Vo, ...
Training examples: (input, desired output) pairs
Learn to map an arbitrary input to its corresponding output
Example: Highway driving
Input = road image, output = steering angle

v W W
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Classification using “Perceptrons”

+ Fancy name for a type of layered feedforward networks

4+ Uses artificial neurons (“units’) with binary inputs and
outputs
Multilayer
Single-layer

AN
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Perceptrons use “Threshold Units™

+ Artificial neuron:
< m binary inputs (-1 or 1) and 1 output (-1 or 1)

~ Synaptic weights w;; v. =0 W.u. — 1
< Threshold . ! (ZJ: )

OXX)=+1ifx>0and-1ifx<0

Wi:  Weighted Sum  Threshold

Inputs u;  w;,

Output v;
(-1 or +1)

(-1 or +1)

M
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What does a Perceptron compute?

+ Consider a single-layer perceptron
< Weighted sum forms a linear hyperplane (line, plane, ...)

ZWU'UJ’ — 1 =0
j

< Everything on one side of hyperplane is in class 1 (output =
+1) and everything on other side is class 2 (output = -1)

< Any function that is linearly separable can be computed by
a perceptron
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Linear Separability

+ Example: AND function is linearly separable
~>aANDDb=1ifandonlyifa=1andb=1

Linear hyperplane \\l'JZ (1,1) V
yperp \y’ 1\ » w=15
N\
~\ w =1 w, =1
u 1 >

-1 1 SOl

0] -1 0) ul U2
¢ +1 output
e -1output Perceptron for AND
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Perceptron Learning Rule

4+ Given inputs u and desired output v9, adjust w as follows:

1. Compute error signal e = (v@ — v) where v is the current output

2. Change weights according to the error:

W—)W-I—&‘(Vd —V)U A — B means replace Awith B

= E.g., for positive inputs, this increases weights if error is
positive and decreases weights if error is negative (opposite
for negative inputs)
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What about the XOR function?

u, U XOR 7 ® +]1 output
o U2 e -1 output
o R |1
- ’\
1]-1] -1 . lu
101 A 1 NN
\\
1] 1| +1
o '1 O

Can a straight line separate the +1 outputs from
the -1 outputs?
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Linear Inseparability

+ Single-layer perceptron with threshold units fails if
classification task is not linearly separable
< Example: XOR
< No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs!

. N (1,1)
4+ Minsky and Papert’s book 1s
showing such negative results put X 1
a damper on neural networks 1 AN
research for over a decade! "\
o -1 s
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How do we deal with linear inseparability?
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Multilayer Perceptrons

+ Removes limitations of single-layer networks
< Can solve XOR

+ An example of a two-layer perceptron that computes XOR

+ Outputis+lifandonly ifx+y +20(—-x-y—-15)>-1
R.Rao, 528: Lecure 13 (|nputs X and y can be +1 or -1) 33



What If you want to approximate a
continuous function?

Can a network learn to drive?
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Example Network

Sharp Straight Sharp
Left Ahead Right
S.reer'lng Gngle T 30 Output
Units
Desired Output:
d=[d, d, ... dy]
Current image —p 30x32 Sensor
Input Retina
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Function Approximation

+ We want networks that can learn a function
<> Network maps real-valued inputs to real-valued outputs
< Want to generalize to predict outputs for new inputs
< ldea: Given input data, map input to desired output by
adapting weights
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Example: Radial Basis Function (RBF) Networks

output neurons

one layer of
hidden neurons

Input nodes
R. Rao, 528: Lecture 13
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Radial Basis Function Networks

output neurons

_Zi:l(xi —Wi j )

2072

__— Hidden layer output: hj =_e
(Gaussian bell-shaped function)

h

Input nodes
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Radial Basis Function Networks

output neurons
output of network:

out, :Zvi,jhi

 Main Idea: Use a mixture of Gaussian
functions h; to approximate the output
e Gaussians are called “basis functions”

Input nodes
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RBF networks

+ Each hidden unit stores a mean (in its weights) and a
variance

+ Each hidden unit computes a Gaussian function of input x

4+ Can derive learning rules for output weights v;, means w;,
and variances o, by minimizing squared output error
function (via gradient descent learning)

4+ See http://en.wikipedia.org/wiki/Radial basis function network for more
details and links.
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http://en.wikipedia.org/wiki/Radial_basis_function_network
http://en.wikipedia.org/wiki/Radial_basis_function_network

Next Class: Backpropagation and Reinforcement
|_earnin

4+ Things to do:
< Read Chapter 9
< Finish Homework 3 (due Friday, May 20)
< Work on group project

I’ll be starring in Y
reinf. learning

wx 9 -r’

l" "
"
A= \
J;

(l‘
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