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CSE/NB 528

Lecture 13: From Unsupervised Learning  to 

Supervised Learning
(Chapters 8 & 10)
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What’s on the menu today?

 Unsupervised Learning
 Sparse coding and 

Predictive coding

 Supervised Learning
 Classification versus Function Approximation/Regression

 Perceptrons & Learning Rule

 Linear Separability: Minsky-Papert deliver the bad news

 Multilayer networks to the rescue

 Radial Basis Function Networks

(Copyright, Gary Larson)
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Recall: Generative Models for Unsupervised Learning

Causes  v

Data u

Generative 

model

Suppose input u was 

generated by a linear 

superposition of 

causes v1, v2, …, vk

with basis vectors (or 

“features”) gi

(e.g., an image composed 

of several features, or 

audio containing several 

voices)

noisev
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ii gu
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Example: “Eigenfaces”

 Suppose your basis vectors or “features” gi  are the 

eigenvectors  of input covariance matrix of face images

u
1 g

2 g
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Linear combination of eigenfaces
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Linear Generative Model

 Suppose input u was generated by linear superposition of 

causes v1, v2, …, vk and basis vectors or “features” gi:

 Problem: For a set of inputs u, estimate causes vi for each u

and learn feature vectors gi

 Suppose number of causes is much lesser than size of input

 Idea: Find v and G that minimize reconstruction errors:
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Probabilistic Interpretation

 E is the same as the negative log likelihood of data:

Likelihood = Gaussian with mean Gv and identity 

covariance matrix I

),;(];|[ IGNGp vuvu 

CGGGpE T  )()(
2

1
];|[log vuvuvu

Minimizing error function E is the same as 

maximizing log likelihood of the data
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Bayesian approach

 Would like to maximize posterior:

 Equivalently, find v and G that maximize:

];[log];|[log),( GpGpGF vvuv 

Prior for causes (what should this be?)

];[];|[];|[ GpGpGp vvuuv 
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What do we know about the causes v?

 We would like the causes to be independent
 If cause A and cause B always occur together, then perhaps 

they should be treated as a single cause AB?

 Examples: 
 Image: Composed of several independent edges

 Sound: Composed of independent spectral components

 Objects: Composed of several independent parts
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What do we know about the causes v?

 We would like the causes to be independent

 Idea 1: We would like:

 Idea 2: If causes are independent, only a few of them will be 

active for any input

 va will be 0 most of the time but high for a few inputs

 Suggests a sparse distribution for the prior p[va;G]

];[];[ GvpGp
a

av
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Prior Distributions for Causes

))(exp(];[ 
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Spikes in area IT in 

monkey viewing TV

Possible prior 

distributions
Log prior

sparse
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Finding the optimal v and G

 Want to maximize:

 Approximate EM algorithm: 

 E step: Maximize F with respect to v keeping G fixed

 Set dv/dt  dF/dv (“gradient ascent/hill-climbing”)

M step: Maximize F with respect to G, given the v above

 Set dG/dt  dF/dG (“gradient ascent/hill-climbing”)

KvgGG

GpGpGF

a

a

T 



 )()()(
2

1

];[log];|[log),(

vuvu

vvuv

(During implementation, let v converge for each input 

before changing synaptic weights G)
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E Step: Estimating v

)()( vvu
v

gGG
dt

d T 
Firing rate dynamics 

(Recurrent network)

Error Sparseness constraint

)()( vvu
v

v
gGG

d

dF

dt

d T 
Gradient 

ascent

Reconstruction 

(prediction) of u
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Recurrent network for estimating v

)( vu G vG

)()( vvu
v

gGG
dt

d T 

PredictionError

Correction

[Suggests a role for feedback pathways in the cortex (Rao & Ballard, 1999)]
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M step: Learning the Synaptic Weights G

)( vu G vG

T
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Hebbian!

(similar to Oja’s rule)

Learning 

rule

PredictionError
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Result: Learning G for Natural Images

Each square is a column 

gi of G (obtained by 

collapsing rows of the 

square into a vector) 

vgu Gv
i

ii 

Any image patch u

can be expressed as:

Almost all the gi

represent local edge 

features

(Olshausen & Field, 1996)
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Sparse Coding Network is a special case of

Predictive Coding Networks

(Rao, Vision Research, 1999)

(See also Chapter 12 in the Anastasio textbook)
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Predictive Coding Model of Visual Cortex

(Rao & Ballard, Nature Neurosci., 1999)
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Predictive coding model explains contextual effects

Monkey Primary Visual Cortex Model

(Rao & Ballard, Nature Neurosci., 1999)
(Zipser et al., J. Neurosci., 1996)
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Contextual effects arise from Natural Image properties

(Rao & Ballard, Nature Neurosci., 1999)
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What if your data comes with not just inputs but 

also outputs?

Enter…Supervised Learning
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Example: Supervised Learning for Face Detection

Can we learn a network to distinguish 

faces from other objects?
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The Classification Problem

denotes output of +1 (faces)

denotes output of -1 (other)
Faces

Other objects

Idea: Find a separating hyperplane (line in this case)
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Supervised Learning

 Two Primary Tasks

1. Classification

 Inputs u1, u2, … and discrete classes C1, C2, …, Ck

 Training examples: (u1, C2), (u2, C7), etc.

 Learn the mapping from an arbitrary input to its class

 Example: Inputs = images, output classes = face, not a face

2. Function Approximation (Regression)

 Inputs u1, u2, … and continuous outputs v1, v2, …

 Training examples: (input, desired output) pairs

 Learn to map an arbitrary input to its corresponding output

 Example: Highway driving

Input = road image, output = steering angle
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Classification using “Perceptrons”

 Fancy name for a type of layered feedforward networks

 Uses artificial neurons (“units”) with binary inputs and 

outputs

Multilayer

Single-layer
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Perceptrons use “Threshold Units”

 Artificial neuron:

 m binary inputs (-1 or 1) and 1 output (-1 or 1)

 Synaptic weights wij

 Threshold i

Inputs uj

(-1 or +1)
Output vi

(-1 or +1)

Weighted Sum Threshold

(x) = +1 if x  0 and -1 if x < 0

)( ij

j

iji uwv  
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What does a Perceptron compute?

 Consider a single-layer perceptron

Weighted sum forms a linear hyperplane (line, plane, …)

 Everything on one side of hyperplane is in class 1 (output = 

+1) and everything on other side is class 2 (output = -1)

 Any function that is linearly separable can be computed by 

a perceptron

0 ij

j

ijuw 
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Linear Separability

 Example: AND function is linearly separable

 a AND b = 1 if and only if a = 1 and b = 1

Linear hyperplane v

u1 u2

 = 1.5
(1,1)

1

-1

1

-1
u1

u2

Perceptron for AND
+1 output

-1 output
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Perceptron Learning Rule

 Given inputs u and desired output vd, adjust w as follows:

1. Compute error signal e = (vd – v) where v is the current output

2. Change weights according to the error:

 E.g., for positive inputs, this increases weights if error is 

positive and decreases weights if error is negative (opposite 

for negative inputs)

uww )( vvd   BABA  with  replace means  
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What about the XOR function?

1

-1

1

-1
u1

u2

-1 -1 +1

1 -1 -1

-1 1 -1

1 1 +1

u1 u2 XOR

Can a straight line separate the +1 outputs from 

the -1 outputs?

? +1 output

-1 output
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Linear Inseparability

 Single-layer perceptron with threshold units fails if 

classification task is not linearly separable

 Example: XOR

 No single line can separate the “yes” (+1)

outputs from the “no” (-1) outputs!

 Minsky and Papert’s book 

showing such negative results put 

a damper on neural networks 

research for over a decade!

(1,1)

1

-1

1

-1
u1

u2

X
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How do we deal with linear inseparability?
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Multilayer Perceptrons

 Removes limitations of single-layer networks
 Can solve XOR

 An example of a two-layer perceptron that computes XOR

 Output is +1 if and only if x + y + 2(– x – y – 1.5) > – 1

-1

2

 = -1

 = 1.5

-1

1 1

x y

(Inputs x and y can be +1 or -1)
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What if you want to approximate a 

continuous function?

Can a network learn to drive?
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Example Network

Input u = [u1  u2 … u960]  = image pixels

Steering angle

Current image

Desired Output:

d = [d1  d2 … d30]
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Function Approximation

 We want networks that can learn a function
 Network maps real-valued inputs to real-valued outputs

Want to generalize to predict outputs for new inputs

 Idea: Given input data, map input to desired output by 

adapting weights
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Example: Radial Basis Function (RBF) Networks

input nodes

output neurons

one layer of

hidden neurons
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Radial Basis Function Networks
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Radial Basis Function Networks

output of network:


i

ijij hv ,out

input nodes

output neurons

• Main Idea: Use a mixture of Gaussian 

functions hi to approximate the output

• Gaussians are called “basis functions”

jiv ,

ih
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RBF networks

 Each hidden unit stores a mean (in its weights) and a 

variance

 Each hidden unit computes a Gaussian function of input x

 Can derive learning rules for output weights vi, means wi, 

and variances 2
i by minimizing squared output error 

function (via gradient descent learning)

 See http://en.wikipedia.org/wiki/Radial_basis_function_network for more 

details and links.

http://en.wikipedia.org/wiki/Radial_basis_function_network
http://en.wikipedia.org/wiki/Radial_basis_function_network
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Next Class: Backpropagation and Reinforcement 

Learning

 Things to do:
 Read Chapter 9

 Finish Homework 3 (due Friday, May 20)

Work on group project

I’ll be starring in

reinf. learning


