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CSE/NB 528

Lecture 14: 

From Supervised to Reinforcement Learning
(Chapter 9)
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Sigmoid output function:

Sigmoid is a non-linear “squashing” function: Squashes input to 

be between 0 and 1. Parameter  controls the slope.
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Recall from last time: Sigmoid Networks
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What should we optimize?

 Given training examples (um,dm) (m = 1, …, N), define the 

output error function:
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How would you change w so that E(w) is minimized?



4R. Rao, 528: Lecture 14

 How would you change w so that E(w) is minimized?

 Gradient Descent: Change w in proportion to –dE/dw  

(why?)

Derivative of sigmoid

Learning the Synaptic Weights
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Also known as 

the “delta rule” 

or “LMS (least 

mean square) 

rule”

delta = error
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But wait….

 What if we have multiple layers?

Delta rule can be used to adapt 

these weights

How do we adapt these?

(no desired output provided here)

Input u = (u1  u2 … uK)T

Output v = (v1  v2 … vJ)
T; Desired = d
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Enter…the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)
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Uppermost layer (delta rule)
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{delta rule}
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Learning rule for hidden-output weights W:
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{gradient descent}
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Backpropagation: Inner layer (chain rule)

)( j

j

ji

m

i xWgv 

m

ku






















 m

k

m

k

k

kjji

j

m

jji

m

i

m

i

imkj

kj

j

jkjkj

kjkj

uuwgWxWgvd
dw

dE

dw

dx

dx

dE

dw

dE

dw

dE
ww

)()()(

 :But    

,

 {chain rule}

)( m

k

k

kj

m

j uwgx 

Learning rule for input-hidden weights w:

2)(
2

1
),( i

i

i vdE  wW



9R. Rao, 528: Lecture 14

Example: Learning to Drive
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Example Network

Training Input u = (u1  u2 … u960)  = image pixels

Get steering angle

Get current 
camera image

Training Output:

d = (d1  d2 … d30)

(Pomerleau, 1992)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf
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Training the network using backprop
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Start with random weights W, w

Given input u, network produces   

output v

Use backprop to learn W and w

that minimize total error over all 

output units (labeled i): 
ku
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Learning to Drive using Backprop

One of the learned 
“road features” wi
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ALVINN (Autonomous Land Vehicle in a Neural Network)

(Pomerleau, 1992)

Trained using human 
driver + camera images

After learning:
Drove up to 70 mph on 
highway
Up to 22 miles without 
intervention
Drove cross-country 
largely autonomously

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf
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But that doesn’t help me 

find food in a maze
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Humans (and animals in general) don’t get exact 

supervisory signals (commands for muscles) for 

learning to talk, walk, ride a bicycle, play the piano, 

drive, etc.

We learn by trial-and-error 

(with hints from others)

Might get “rewards and punishments” along the way

Enter…Reinforcement Learning
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The Reinforcement Learning “Agent”

Agent

Environment

State

ut

Reward

rt

Action

at
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The Reinforcement Learning Framework

 Unsupervised learning: Learn the hidden causes of inputs

 Supervised learning: Learn a function based on training 

examples of (input, desired output) pairs

 Reinforcement Learning: Learn the best action for any 

given state so as to maximize total expected (future) reward
 Intermediate between unsupervised and supervised learning

Instead of explicit teaching signal (or desired output), you get 

rewards or punishments

 Inspired by classical conditioning experiments
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Early Results: Pavlov and his Dog

 Classical (Pavlovian) 

conditioning experiments 

 Training: Bell Food

 After: Bell  Salivate

 Conditioned stimulus 

(bell) predicts future 

reward (food)
(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)
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Predicting Delayed Rewards

 Reward is typically delivered at the end (when you know 

whether you succeeded or not)

 Time: 0  t  T with stimulus u(t) and reward r(t) at each 

time step t (Note: r(t) can be zero at some time points)

 Key Idea: Make the output v(t) predict total expected future 

reward starting from time t
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Learning to Predict Delayed Rewards

 Use a set of modifiable weights w(t) and predict based on all 

past stimuli u(t):

 Would like to find the weights (or filter) w() that minimize:
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Yes, BUT…not yet available are the future rewards

(Can we minimize this using 

gradient descent and delta rule?)
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Temporal Difference (TD) Learning

 Key Idea: Rewrite squared error to get rid of future terms:

 Temporal Difference (TD) Learning:
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Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error  for each time step

(over many trials)
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Reward Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error?

No error
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More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

Negative error
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That’s great, but how does 

all that math help me get 

food in a maze?
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Using Reward Predictions to Select Actions

 Suppose you have computed a “Value” for each action

 Q(a) = value (predicted reward) for executing action a

 Higher if action yields more reward, lower otherwise

 Can select actions probabilistically according to their value:
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 (High  selects actions with 

highest Q value. Low 

selects more uniformly)
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Simple Example: Bee Foraging

http://svi.cps.utexas.edu/bee_on_flower_original.htm

 Experiment: Bees select either 

yellow (y) or blue (b) flowers 

based on nectar reward

 Idea: Value of yellow/blue = 

average reward obtained so far

Yum!
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Simulating Bees

 = 1 (exploration possible)

 = 50  = 50 (mostly exploitation)
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Forget bees, how do I get 

to the food in the maze?
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Selecting Actions when Reward is Delayed

States: A, B, or C

Possible actions at 

any state: Left (L) or 

Right (R)

If you randomly 

choose to go L or R 

(random “policy”), 

what is the value v of 

each state?
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Policy Evaluation

For random policy:

Can learn this using 

TD learning:
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Let v(u) = w(u)

(Location, action)  new location
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Maze Value Learning for Random Policy

1.75
2.5

1

Once I know the values, I can pick the action 

that leads to the higher valued state!
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Selecting Actions based on Values

2.5 1

Values act as 

surrogate immediate 

rewards Locally 

optimal choice leads 

to globally optimal 

policy (for Markov 

environments)

Related to Dynamic 

Programming in CS

(see appendix in text)
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Actor-Critic Learning

 Two separate components: Actor (maintains policy) and 
Critic (maintains value of each state)

1.   Critic Learning (“Policy Evaluation”): 
Value of state u = v(u) = w(u)

2.   Actor Learning (“Policy Improvement”):

3. Interleave 1 and 2
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Use this to select an action a in u

(same as TD rule)

For all a’:
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Actor-Critic Learning in the Maze Task

Probability of going Left at a location



36R. Rao, 528: Lecture 14

Demo of Reinforcement Learning in a Robot
(from http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html )

../CSE528-05/reinf-demo/robodemo.html
../CSE528-05/reinf-demo/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
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Things to do:

Finish homework 3

Work on group project

Next week: Prof. Emo 

Todorov on motor control


