CSE/NB 528
Lecture 14:

From Supervised to Reinforcement Learning
(Chapter 9)
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Recall from last time: Sigmoid Networks

Output v=g(w'u) = g(Zwiui) Sigmoid output function:

i 1+e

Input nodes /r‘&
u=(u; U, Uy’ |

Sigmoid Is a non-linear “squashing” function: Squashes input to
be between 0 and 1. Parameter 3 controls the slope.
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What should we optimize?

4+ Given training examples (u™,d™) (m =1, ..., N), define the
output error function:

E(w)=%<dm _ymy?

where v" =g(w'u™)
How would you change w so that E(w) Is minimized?
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Learning the Synaptic Weights

+ How would you change w so that E(w) is minimized?
< Gradient Descent: Change w in proportion to —dE/dw

(why?)
wow-g3E Ew) = (d" V")’
dw 2

dE . Also known as

d_W:_(\d -V 29 (w u™)u the “delta rule”
or “LMS (least

delta = error mean square)
rule”

Derivative of sigmoid
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But wait....

+ What if we have multiple layers?
Vi = g(ZWjig(Zijuk))
j k

Outputv = (v, V, ... v;)T; Desired =d
w —— Deltarule can be used to adapt
these weights

7}, . ——— How do we adapt these?
(no desired output provided here)

Input u = (u; U, ... u)’
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Enter...the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)

R. Rao, 528: Lecture 14



Uppermost layer (delta rule)

Learning rule for hidden-output weights W:

dE
Wi > Wi —¢ v {gradient descent}

ji

dE /
dW:_(di -V )9' QO Wix;)X;  {delta rule}
i J



Backpropagation: Inner layer (chain rule)

E(vv,w)%Z(di V)’

Learning rule for input-hidden weights w:

dx.
dE But - dE dE ,

dw,, dw, dx, .dwkj

dE _ |:_Z(dim _Vim)g'(zwjixgn)wji:|-|:g’(Ziju|£n)ulin:|

dw

{chain rule}




Example: Learning to Drive
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Example Network

Sharp Straight Sharp
Left Ahead Right
Get steering angle — 30 Output
Units
Training Output:
d=(d, d, ... dy)
GeT Cur.r.en.r — 30x32 Sensor
camera image Input Retina

Training Input u = (U; U, ... ugg,) = IMage pixels
(Pomerleau, 1992)



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf

Training the network using backprop
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Start with random weights W, w

Given input u, network produces
output v

Use backprop to learn W and w
that minimize total error over all
output units (labeled 1):

E(W,w) = %Z(di -V )’



_earning to Drive using Backprop

Straight Sharp
Ahead Right

30 Output
Units

30x32 Sensor
Input Retina

One of the learned
“road features” w,




ALVINN (Autonomous Land Vehicle in a Neural Network)
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Y Trained using human

driver + camera images

B8 After learning:

Drove up to 70 mph on
highway

Up to 22 miles without
iIntervention

Drove cross-country
largely autonomously

(Pomerleau, 1992)
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http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf

But that doesn’t help me
find food in a maze

el 4

L -
Lj\
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Humans (and animals in general) don’t get exact
supervisory signals (commands for muscles) for
learning to talk, walk, ride a bicycle, play the piano,
drive, etc.

We learn by trial-and-error
(with hints from others)

Might get “rewards and punishments” along the way

Enter..Reinforcement Learning
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The Reinforcement Learning “Agent”

g | Agent
\.\‘\/“l
State“ ‘Reward Action
U, Iy A
Environment <
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The Reinforcement Learning Framework

+ Unsupervised learning: Learn the hidden causes of inputs

4+ Supervised learning: Learn a function based on training
examples of (input, desired output) pairs

+ Reinforcement Learning: Learn the best action for any
given state so as to maximize total expected (future) reward
< Intermediate between unsupervised and supervised learning

Instead of explicit teaching signal (or desired output), you get
rewards or punishments

< Inspired by classical conditioning experiments
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Early Results: Pavlov and his Dog

+ Classical (Pavlovian)
conditioning experiments

4+ Training: Bell 2> Food
+ After: Bell > Salivate

+ Conditioned stimulus -
(bell) predicts future . @ %

reward (food) i |
(http /lemployees.csbsju.edu/tcreed/pb/pdoganim.html)

3 v |:-. ';hﬁ.-l
.
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Predicting Delayed Rewards

+ Reward is typically delivered at the end (when you know
whether you succeeded or not)

+ Time: 0 <t < T with stimulus u(t) and reward r(t) at each
time step t (Note: r(t) can be zero at some time points)

+ Key ldea: Make the output v(t) predict total expected future
reward starting from time t

v(t) ~ <T§f r(t+ r)>

7=0
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Learning to Predict Delayed Rewards

4+ Use a set of modifiable weights w(t) and predict based on all
past stimuli u(t):

v(t) = Ztlw(r)u(t —7)

+ Would like to find the weights (or filter) w(z) that minimize:

Tt 2
(Z r(t+r)—v(t)j (Can we minimize this using
=0 gradient descent and delta rule?)

{Yes, BUT...not yet available are the future rewards
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Temporal Difference (TD) Learning

+ Key ldea: Rewrite squared error to get rid of future terms:

(E r(t+7) —v(t)j = (r(t) +T_th1r(t +1+17) —v(t)j

~(r{t) +v(t +1) —v(t))

+ Temporal Difference (TD) Learning:
0

W(r) >W(r)+¢& [E(t) + v(?: 1) - v(t)]u(t—7)

\

Expected future reward  prediction
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Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

N before after
Y SR
2- SR S
2_77777ﬁ777777777 77777? 777777777
v 4j§ —
5 1- i i
2_
1l Av A _—
3 S S
100 t 200 0 100 200 0 100 200
t t

Prediction error 6 for each time step

(over many trials)
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Reward Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Reward Prediction error? [r(t) +v(t+1) —v(t)]

50 / ..
Hz‘early L ‘ Before Training

late |
gillhﬂ.ﬂhhlmu [h..hamihhlh..ln.luh.i.i. After Traini ng
-0.5 0 t(s) 0 t(s) 0.8
stimulus J/ reward J \

No error
[0-+v(t+1)—v(t)] v(t) = r(t) +v(t+1)
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More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

reward
p.lu..gim.u.u
| no reward

-1 0 t(s) 1 \ 2

Negative error

r(t)=0,v(t+1) =0
[r(t) +v(t+1)—v(t)]=—Vv(t)
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That’s great, but how does\

all that math help me get
food in a maze?

- \r”
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Using Reward Predictions to Select Actions

4+ Suppose you have computed a “Value” for each action

+ Q(a) = value (predicted reward) for executing action a
< Higher if action yields more reward, lower otherwise

4+ Can select actions probabilistically according to their value:

P(a) = exp(/Q(a)) (High B selects actions with
Zexp (4Q(a")) highest Q value. Low (3

selects more uniformly)
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Simple Example: Bee Foraging

4+ Experiment; Bees select either
yellow (y) or blue (b) flowers
based on nectar reward

4+ lIdea: Value of yellow/blue =
average reward obtained so far

Q(y) > Q(y) +&(r, —Q(Y)) {delta rule | - =
(running = F
Q(b) = Q(b) +&(r, —Q(b))

average) :
exp (AQ(Y))
exp(AR(Y)) +exp(A(b))

P(b) =1-P(y)

P(y) =
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Simulating Bees

0 100

sum visits

0 100
visits to flowers
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200

sum visits

sum visits

B =1 (exploration possible)

yellow .~

blue

v, [ ——
[ ————'t:—

100
visits to flowers

B =50 (mostly exploitation)

200

--------------
-

yellow :
Gd

blue

1

1

1

1
O’I
JO
1

I

1
1
1

100
visits to flowers

200
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Forget bees, how do | get
to the food in the maze?

R. Rao, 528: Lecture 14
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Selecting Actions when Reward is Delayed

States: A, B, or C

5 0 Possible actions at
B 2 C any state: Left (L) or
0 Right (R)
A
" If you randomly
1\ choosetogoLorR

(random “policy”),
enter what is the value v of
each state?
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Policy Evaluation

5 For random policy:
B 2 C 1 1
0 v(B)_E-0+E-5_2.5
A 1, 1
|1\| V(C)—E-2+§-O—1
V(A) =£-V(B)+£-V(C) =1.75
enter 2 2
(Location, action) = new location Canlleam. th!S using
(U,3) = U’ TD learning:
Let v(u) = w(u) w(u) > w(u)+e[r, (u)+v(u')—v(u)]

R. Rao, 528: Lecture 14
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Maze Value Learning for Random Policy

5
w(A) w(B) w(C)
w 2.5 AY- =
1.75
5 1L ) )
00 15 30 0 15 30 0 15 30
trial trial trial

Once | know the values, | can pick the action
that leads to the higher valued state!

¥ o &
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Selecting Actions based on Values

2.5 5 1
B 2 C
0
—A
|1\|
enter

R. Rao, 528: Lecture 14

Values act as
surrogate immediate
rewards - Locally
optimal choice leads
to globally optimal
policy (for Markov
environments)
Related to Dynamic
Programming in CS
(see appendix in text)
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Actor-Critic Learning

+ Two separate components: Actor (maintains policy) and
Critic (maintains value of each state)

1. Critic Learning (“Policy Evaluation™):
Value of state u = v(u) = w(u)
w(u) > w(u)+e[r,(u)+v(u')—v(u)] (sameasTD rule)

2. Actor Learning (“Policy Improvement™):

P(a;u) = i);p)é@éiu(g)) Use this to select an action a in u

Forall a’:
Q. (U) = Q,.(u) +&lr, (U) +v(u) —v(u)](,, — P(a’;u))

3. Interleave 1 and 2
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Actor-Critic Learning in the Maze Task

S) 0
B 2 C

A
|4\|

Probability of going Left at a location

0 50 100 0 50 100 0 50 100
trial trial trial
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Demo of Reinforcement Learning in a Robot
(from http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html )

‘ Agent

observation X reward R action A

(angles of joints) J(body movement J(turning direction
per step) of the joints)

Environment
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http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
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Things to do:
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Finish homework 3
Work on group project

Next week: Prof. Emo
Todorov on motor control
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