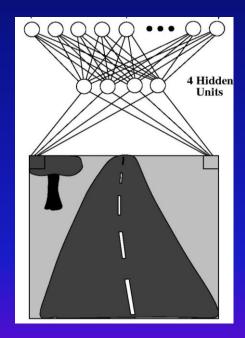
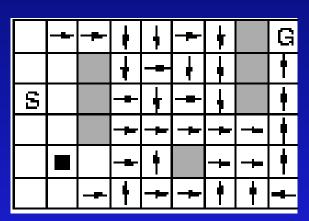
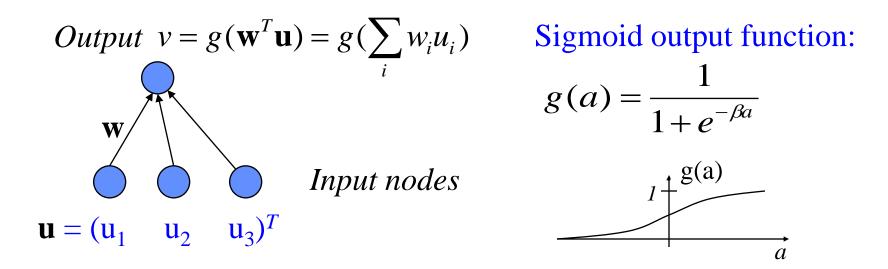
CSE/NB 528 Lecture 14: From Supervised to Reinforcement Learning (Chapter 9)





Recall from last time: Sigmoid Networks



Sigmoid is a non-linear "squashing" function: Squashes input to be between 0 and 1. Parameter β controls the slope.

What should we optimize?

◆ Given training examples (u^m,d^m) (m = 1, ..., N), define the <u>output error function</u>:

$$E(\mathbf{w}) = \frac{1}{2} (d^m - v^m)^2$$

where
$$v^m = g(\mathbf{w}^T \mathbf{u}^m)$$

How would you change w so that E(w) is minimized?

R. Rao, 528: Lecture 14

✦ How would you change w so that *E*(w) is minimized?
 ⇒ Gradient Descent: Change w in proportion to -*dE/d*w (why?)

$$\mathbf{w} \rightarrow \mathbf{w} - \varepsilon \frac{dE}{d\mathbf{w}} \qquad E(\mathbf{w}) = \frac{1}{2} (d^m - v^m)^2$$

$$\frac{dE}{d\mathbf{w}} = -(d^m - v^m)g'(\mathbf{w}^T \mathbf{u}^m)\mathbf{u}^m \qquad \text{Also known as the "delta rule"} or "LMS (least mean square) rule"$$
Derivative of sigmoid

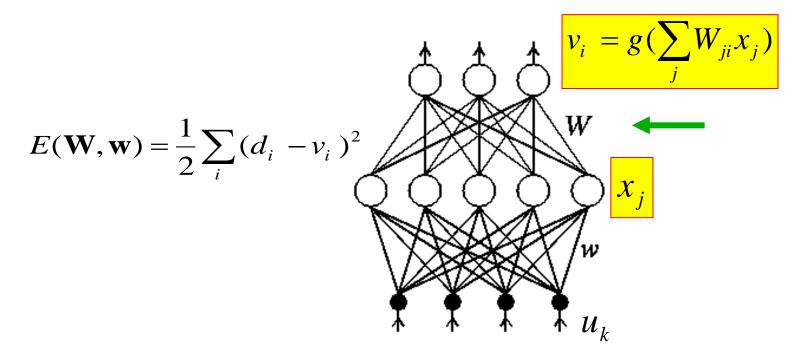
But wait....

♦ What if we have multiple layers?

Enter...the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)

Uppermost layer (delta rule)



Learning rule for <u>hidden-output weights W</u>:

$$W_{ji} \to W_{ji} - \varepsilon \frac{dE}{dW_{ji}} \qquad \{\text{gradient descent}\}$$
$$\frac{dE}{dW_{ji}} = -(d_i - v_i)g'(\sum_j W_{ji}x_j)x_j \qquad \{\text{delay}\}$$

Backpropagation: Inner layer (chain rule)

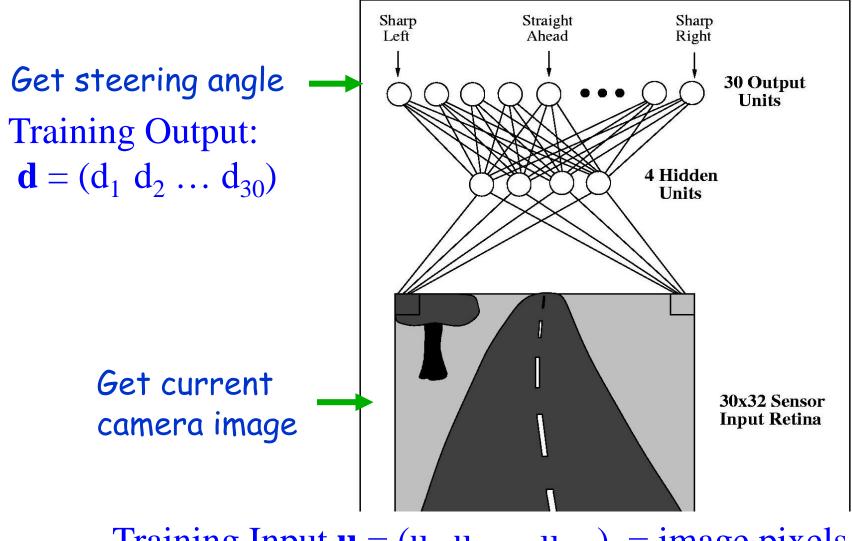
$$E(\mathbf{W}, \mathbf{w}) = \frac{1}{2} \sum_{i} (d_{i} - v_{i})^{2}$$

Learning rule for <u>input-hidden weights w</u>:

$$w_{kj} \rightarrow w_{kj} - \varepsilon \frac{dE}{dw_{kj}} \quad \text{But} : \frac{dE}{dw_{kj}} = \frac{dE}{dx_j} \cdot \frac{dx_j}{dw_{kj}} \quad \{\text{chain rule}\}$$
$$\frac{dE}{dw_{kj}} = \left[-\sum_{m,i} (d_i^m - v_i^m) g'(\sum_j W_{ji} x_j^m) W_{ji} \right] \cdot \left[g'(\sum_k w_{kj} u_k^m) u_k^m \right]_{W_{kj}}$$

Example: Learning to Drive

Example Network



Training Input $\mathbf{u} = (u_1 \ u_2 \ \dots \ u_{960}) = \text{image pixels}$

(Pomerleau, 1992)

Training the network using backprop

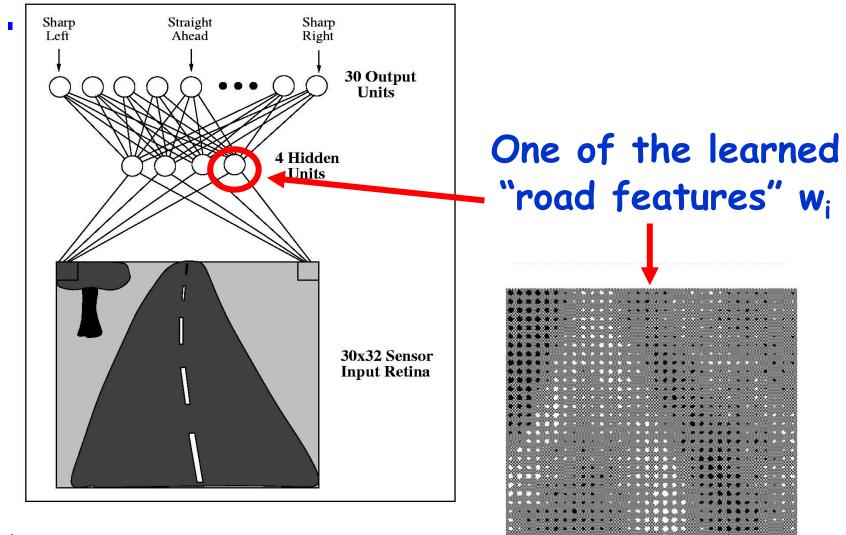
 Start with random weights W, w

Given input **u**, network produces output **v**

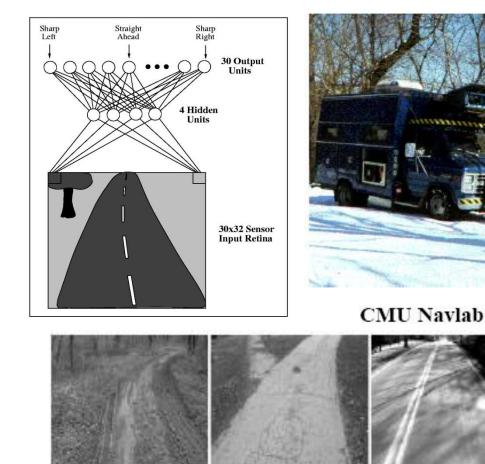
Use backprop to learn W and w that minimize total error over all output units (labeled *i*):

$$E(\mathbf{W},\mathbf{w}) = \frac{1}{2} \sum_{i} (d_i - v_i)^2$$

Learning to Drive using Backprop



ALVINN (Autonomous Land Vehicle in a Neural Network)



Trained using human driver + camera images After learning: Drove up to 70 mph on highway Up to 22 miles without intervention Drove cross-country largely autonomously

(<u>Pomerleau, 1992</u>)

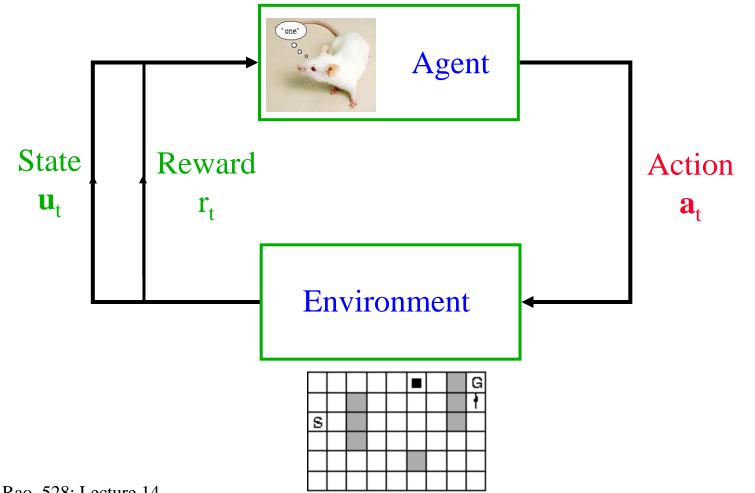
Humans (and animals in general) don't get exact supervisory signals (commands for muscles) for learning to talk, walk, ride a bicycle, play the piano, drive, etc.

> We learn by trial-and-error (with hints from others)

Might get "rewards and punishments" along the way

Enter...Reinforcement Learning

The Reinforcement Learning "Agent"



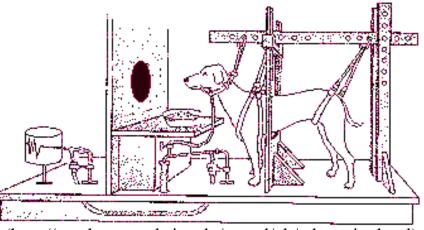
R. Rao, 528: Lecture 14

The Reinforcement Learning Framework

- Unsupervised learning: Learn the hidden causes of inputs
- Supervised learning: Learn a function based on training examples of (input, desired output) pairs
- Reinforcement Learning: Learn the best action for any given state so as to maximize total expected (future) reward
 - Intermediate between unsupervised and supervised learning Instead of explicit teaching signal (or desired output), you get *rewards or punishments*
 - Inspired by <u>classical conditioning</u> experiments

Early Results: Pavlov and his Dog

- Classical (Pavlovian) conditioning experiments
- ◆ <u>Training</u>: Bell → Food
- ◆ <u>After</u>: Bell → Salivate
- Conditioned stimulus (bell) predicts future reward (food)



(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)

Predicting Delayed Rewards

 Reward is typically delivered at the end (when you know whether you succeeded or not)

- Time: 0 ≤ t ≤ T with stimulus u(t) and reward r(t) at each time step t (Note: r(t) can be zero at some time points)
- Key Idea: Make the output v(t) predict total expected future reward starting from time t

$$v(t) \approx \left\langle \sum_{\tau=0}^{T-t} r(t+\tau) \right\rangle$$

Learning to Predict Delayed Rewards

Use a set of modifiable weights w(t) and predict based on all past stimuli u(t):

$$v(t) = \sum_{\tau=0}^{t} w(\tau)u(t-\tau)$$

• Would like to find the weights (or filter) $w(\tau)$ that minimize:

 $\left(\sum_{\tau=0}^{T-t}r(t+\tau)-v(t)\right)^2$

(Can we minimize this using gradient descent and delta rule?)

Yes, BUT...not yet available are the future rewards

R. Rao, 528: Lecture 14

Temporal Difference (TD) Learning

♦ Key Idea: Rewrite squared error to get rid of future terms:

$$\left(\sum_{\tau=0}^{T-t} r(t+\tau) - v(t)\right)^2 = \left(r(t) + \sum_{\tau=0}^{T-t-1} r(t+1+\tau) - v(t)\right)^2$$
$$\approx \left(r(t) + v(t+1) - v(t)\right)^2$$

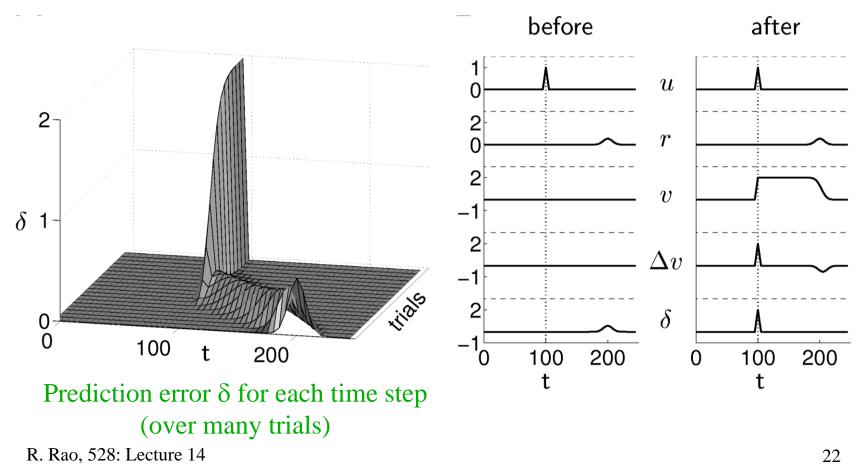
★ Temporal Difference (TD) Learning:

$$w(\tau) \rightarrow w(\tau) + \varepsilon [r(t) + v(t+1) - v(t)] u(t-\tau)$$

Expected future reward Prediction

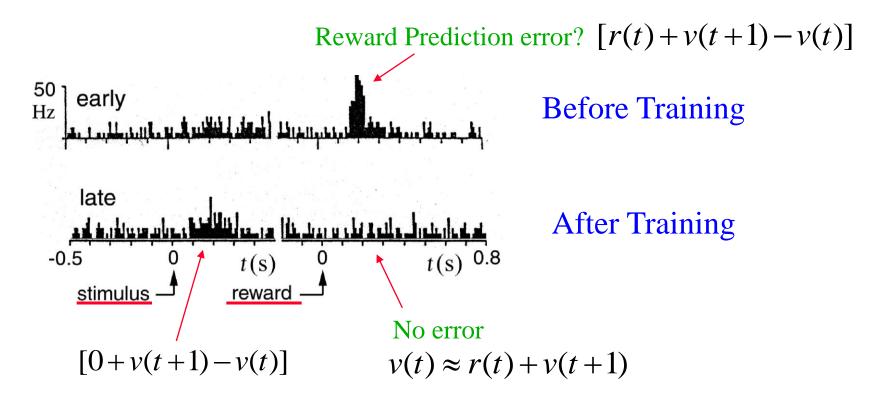
Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200



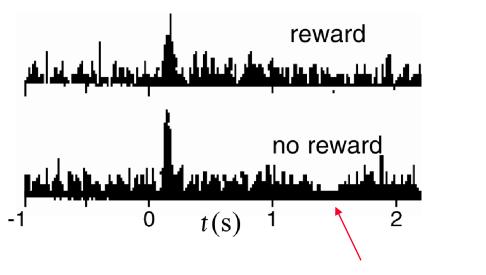
Reward Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)



More Evidence for Prediction Error Signals

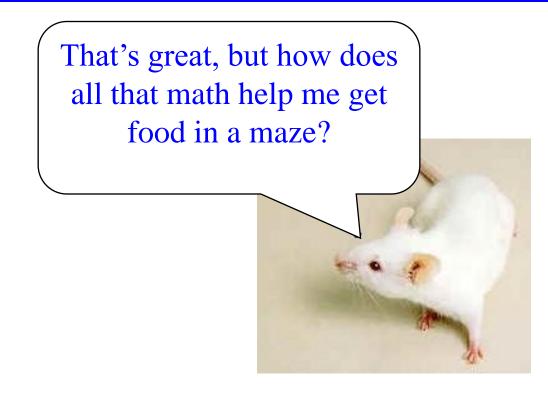
Dopaminergic cells in VTA



Negative error

$$r(t) = 0, v(t+1) = 0$$

[r(t) + v(t+1) - v(t)] = -v(t)



Using Reward Predictions to Select Actions

- Suppose you have computed a "Value" for each action
- ◆ Q(a) = value (predicted reward) for executing action a
 ⇒ Higher if action yields more reward, lower otherwise
- Can select actions probabilistically according to their value:

$$P(a) = \frac{\exp(\beta Q(a))}{\sum_{a'} \exp(\beta Q(a'))}$$

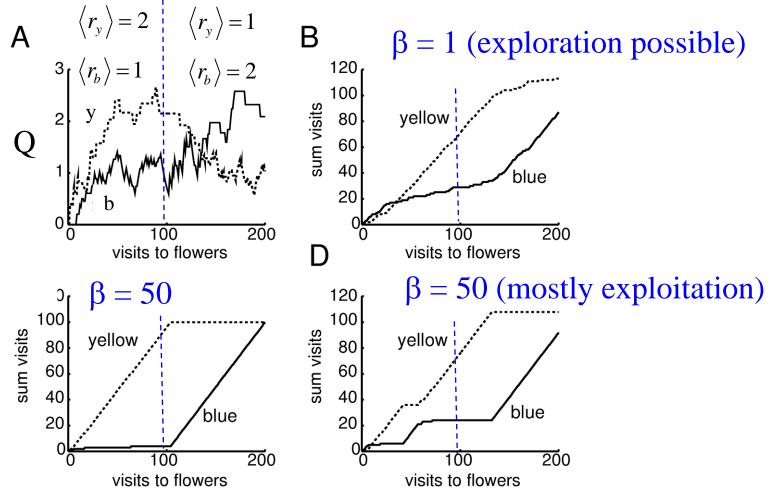
(High β selects actions with highest Q value. Low β selects more uniformly)

Simple Example: Bee Foraging

- <u>Experiment</u>: Bees select either yellow (y) or blue (b) flowers based on nectar reward
- ★ Idea: Value of yellow/blue = average reward obtained so far $Q(y) \rightarrow Q(y) + \varepsilon(r_y - Q(y)) \begin{cases} \text{delta rule} \\ (\text{running}) \\ \text{average} \end{cases}$

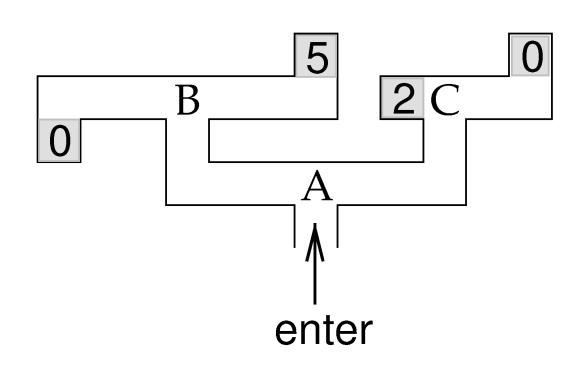
$$P(y) = \frac{\exp(\beta Q(y))}{\exp(\beta Q(y)) + \exp(\beta Q(b))}$$
$$P(b) = 1 - P(y)$$

Simulating Bees



R. Rao, 528: Lecture 14

Selecting Actions when Reward is Delayed

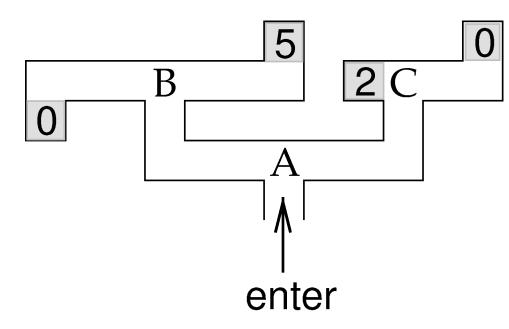


States: A, B, or C

Possible actions at any state: Left (L) or Right (R)

If you randomly choose to go L or R (random "policy"), what is the *value v of each state*?

Policy Evaluation

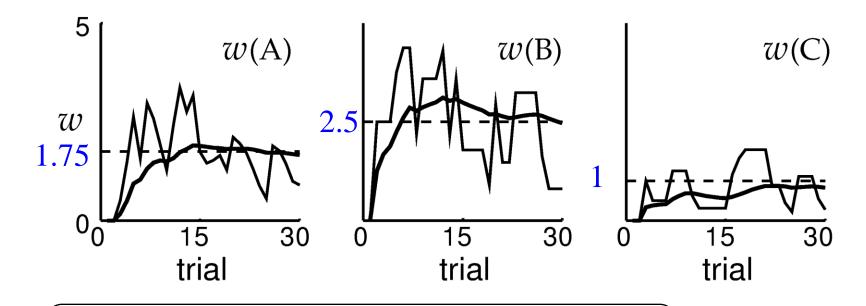


For random policy: $v(B) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 5 = 2.5$ $v(C) = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1$ $v(A) = \frac{1}{2} \cdot v(B) + \frac{1}{2} \cdot v(C) = 1.75$

(Location, action) \Rightarrow new location $(u,a) \Rightarrow u'$ Let $v(u) = w(u) \qquad w(u) \rightarrow$ Can learn this using TD learning:

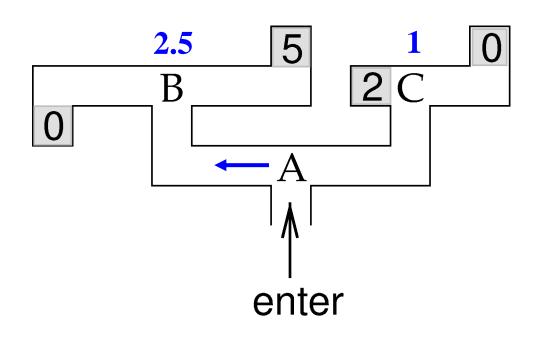
$$w(u) \to w(u) + \varepsilon [r_a(u) + v(u') - v(u)]$$

Maze Value Learning for Random Policy



Once I know the values, I can pick the action that leads to the higher valued state!

Selecting Actions based on Values



Values act as surrogate immediate rewards \rightarrow Locally optimal choice leads to globally optimal policy (for Markov environments) Related to *Dynamic* **Programming** in CS (see appendix in text)

Actor-Critic Learning

- Two separate components: Actor (maintains policy) and Critic (maintains value of each state)
- 1. <u>Critic Learning ("Policy Evaluation")</u>: Value of state u = v(u) = w(u) $w(u) \rightarrow w(u) + \mathcal{E}[r_a(u) + v(u') - v(u)]$ (same as TD rule)
- 2. <u>Actor Learning ("Policy Improvement"):</u>

$$P(a;u) = \frac{\exp(\beta Q_a(u))}{\sum_b \exp(\beta Q_b(u))} \qquad \text{Us}$$

Use this to select an action *a* in *u*

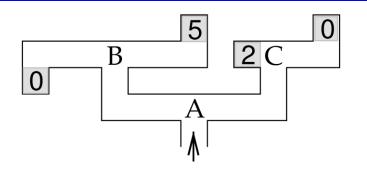
For all *a*':

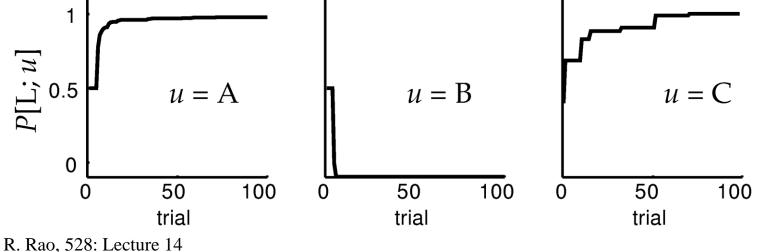
$$Q_{a'}(u) \to Q_{a'}(u) + \varepsilon[r_a(u) + v(u') - v(u)](\delta_{aa'} - P(a';u))$$

3. <u>Interleave 1 and 2</u>

R. Rao, 528: Lecture 14

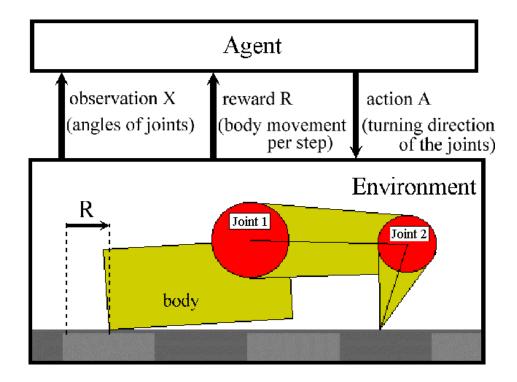
Actor-Critic Learning in the Maze Task





Demo of Reinforcement Learning in a Robot

(from http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html)



Things to do:

Finish homework 3 Work on group project

