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CSE/NB 528

Lecture 14: 

From Supervised to Reinforcement Learning
(Chapter 9)
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Sigmoid output function:

Sigmoid is a non-linear “squashing” function: Squashes input to 

be between 0 and 1. Parameter  controls the slope.
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Recall from last time: Sigmoid Networks
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What should we optimize?

 Given training examples (um,dm) (m = 1, …, N), define the 

output error function:
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How would you change w so that E(w) is minimized?
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 How would you change w so that E(w) is minimized?

 Gradient Descent: Change w in proportion to –dE/dw  

(why?)

Derivative of sigmoid

Learning the Synaptic Weights
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Also known as 

the “delta rule” 

or “LMS (least 

mean square) 

rule”

delta = error
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But wait….

 What if we have multiple layers?

Delta rule can be used to adapt 

these weights

How do we adapt these?

(no desired output provided here)

Input u = (u1  u2 … uK)T

Output v = (v1  v2 … vJ)
T; Desired = d
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Enter…the backpropagation algorithm

(Actually, nothing but the chain rule from calculus)
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Uppermost layer (delta rule)
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{delta rule}
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Learning rule for hidden-output weights W:
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{gradient descent}
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Backpropagation: Inner layer (chain rule)
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Learning rule for input-hidden weights w:
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Example: Learning to Drive
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Example Network

Training Input u = (u1  u2 … u960)  = image pixels

Get steering angle

Get current 
camera image

Training Output:

d = (d1  d2 … d30)

(Pomerleau, 1992)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf
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Training the network using backprop
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Start with random weights W, w

Given input u, network produces   

output v

Use backprop to learn W and w

that minimize total error over all 

output units (labeled i): 
ku
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Learning to Drive using Backprop

One of the learned 
“road features” wi
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ALVINN (Autonomous Land Vehicle in a Neural Network)

(Pomerleau, 1992)

Trained using human 
driver + camera images

After learning:
Drove up to 70 mph on 
highway
Up to 22 miles without 
intervention
Drove cross-country 
largely autonomously

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.4667&rep=rep1&type=pdf
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But that doesn’t help me 

find food in a maze
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Humans (and animals in general) don’t get exact 

supervisory signals (commands for muscles) for 

learning to talk, walk, ride a bicycle, play the piano, 

drive, etc.

We learn by trial-and-error 

(with hints from others)

Might get “rewards and punishments” along the way

Enter…Reinforcement Learning
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The Reinforcement Learning “Agent”

Agent

Environment

State

ut

Reward

rt

Action

at
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The Reinforcement Learning Framework

 Unsupervised learning: Learn the hidden causes of inputs

 Supervised learning: Learn a function based on training 

examples of (input, desired output) pairs

 Reinforcement Learning: Learn the best action for any 

given state so as to maximize total expected (future) reward
 Intermediate between unsupervised and supervised learning

Instead of explicit teaching signal (or desired output), you get 

rewards or punishments

 Inspired by classical conditioning experiments
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Early Results: Pavlov and his Dog

 Classical (Pavlovian) 

conditioning experiments 

 Training: Bell Food

 After: Bell  Salivate

 Conditioned stimulus 

(bell) predicts future 

reward (food)
(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)
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Predicting Delayed Rewards

 Reward is typically delivered at the end (when you know 

whether you succeeded or not)

 Time: 0  t  T with stimulus u(t) and reward r(t) at each 

time step t (Note: r(t) can be zero at some time points)

 Key Idea: Make the output v(t) predict total expected future 

reward starting from time t
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Learning to Predict Delayed Rewards

 Use a set of modifiable weights w(t) and predict based on all 

past stimuli u(t):

 Would like to find the weights (or filter) w() that minimize:
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Yes, BUT…not yet available are the future rewards

(Can we minimize this using 

gradient descent and delta rule?)
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Temporal Difference (TD) Learning

 Key Idea: Rewrite squared error to get rid of future terms:

 Temporal Difference (TD) Learning:
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Expected future reward Prediction
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Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error  for each time step

(over many trials)
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Reward Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error?

No error
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More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

Negative error

)()]()1( )([

0)1( ,0)(

tvtvtvtr

tvtr







25R. Rao, 528: Lecture 14

That’s great, but how does 

all that math help me get 

food in a maze?
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Using Reward Predictions to Select Actions

 Suppose you have computed a “Value” for each action

 Q(a) = value (predicted reward) for executing action a

 Higher if action yields more reward, lower otherwise

 Can select actions probabilistically according to their value:
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 (High  selects actions with 

highest Q value. Low 

selects more uniformly)
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Simple Example: Bee Foraging

http://svi.cps.utexas.edu/bee_on_flower_original.htm

 Experiment: Bees select either 

yellow (y) or blue (b) flowers 

based on nectar reward

 Idea: Value of yellow/blue = 

average reward obtained so far

Yum!

))(()()(

))(()()(

bQrbQbQ

yQryQyQ

b

y







 delta rule

(running

average)

)(1)(

))(exp())(exp(

))(exp(
)(

yPbP

bQyQ

yQ
yP












28R. Rao, 528: Lecture 14

Simulating Bees

 = 1 (exploration possible)

 = 50  = 50 (mostly exploitation)
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Forget bees, how do I get 

to the food in the maze?
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Selecting Actions when Reward is Delayed

States: A, B, or C

Possible actions at 

any state: Left (L) or 

Right (R)

If you randomly 

choose to go L or R 

(random “policy”), 

what is the value v of 

each state?
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Policy Evaluation

For random policy:

Can learn this using 

TD learning:
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Let v(u) = w(u)

(Location, action)  new location



32R. Rao, 528: Lecture 14

Maze Value Learning for Random Policy

1.75
2.5

1

Once I know the values, I can pick the action 

that leads to the higher valued state!
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Selecting Actions based on Values

2.5 1

Values act as 

surrogate immediate 

rewards Locally 

optimal choice leads 

to globally optimal 

policy (for Markov 

environments)

Related to Dynamic 

Programming in CS

(see appendix in text)
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Actor-Critic Learning

 Two separate components: Actor (maintains policy) and 
Critic (maintains value of each state)

1.   Critic Learning (“Policy Evaluation”): 
Value of state u = v(u) = w(u)

2.   Actor Learning (“Policy Improvement”):

3. Interleave 1 and 2
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Use this to select an action a in u

(same as TD rule)

For all a’:
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Actor-Critic Learning in the Maze Task

Probability of going Left at a location
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Demo of Reinforcement Learning in a Robot
(from http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html )

../CSE528-05/reinf-demo/robodemo.html
../CSE528-05/reinf-demo/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
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Things to do:

Finish homework 3

Work on group project

Next week: Prof. Emo 

Todorov on motor control


