The Neurobiology of Decision Making

CSE 528
May 31, 2011

Michael Shadlen, MD PhD Howard Hughes Medical Institute Department of Physiology \& Biophysics
National Primate Research Institute
University of Washington
Seattle, WA

www.shadlen.org

From sensorimotor integration to cognition

mouse

monkey

Human

4

Outline

1. Probabilistic reasoning
2. Perceptual decisions: speed and accuracy
3. Optional: Sequential analysis, Wald's martingale, logistic choice function
4. Variance and covariance as signatures of neural computation
5. Confidence
6. Optional: Integration of prior probability \& evidence

What is a decision?

- A commitment to a proposition or plan of action, ...
- based on evidence, prior knowledge, payoff, urgency
- often requiring flexibility, contingency, interpretation

Some complex decisions

- Choosing a life partner
- Choosing a president
- Whether to invade Iraq

From sensorimotor integration to cognition

Lewis and Van Essen, 2000

Spatially selective, persistent activity

Spatially selective, persistent activity

Spatially selective, persistent activity

Freedom From Immediacy

S. Dali

$\begin{array}{llllllllll}-\infty & -0.9 & -0.7 & -0.5 & -0.3 & 0.3 & 0.5 & 0.7 & 0.9 & \infty\end{array}$

- 10 different shapes w/ different weights
- 4 shapes in a trial,drawn randomly with replacement
- each shape appears with equal probability
- sum of the weights is log odds in favor of red:

$$
\log _{10} \frac{P(\text { red } \mid \text { shapes })}{P(\text { green } \mid \text { shapes })}=\log L R
$$

Probabilistic Categorization

909

$$
\underset{-\infty}{\diamond-0.9-0.7-0.5-0.3} 0
$$

Yang \& Shadlen (2007)
Nature 447: 1075-1080

Fit with logistic function

Allows us to ascertain...

eye position in yellow
One target in the RF of the LIP neuron; other outside
Spikes as shapes are added to the display

logLR

 for Tin$\log L R$
for Tin
logLR for Tin

LIP represents accumulating evidence in units proportional to logLR

ban is unit of logLR

Conclusions from probabilistic reasoning experiment

- Persistent activity represents accumulation of evidence:
- a quantitative mapping between neural response and probability
- This permits "optimal" combination of cues with diverse reliability

I'm pleased we can teach monkeys to do this.

Convertzobservations $x_{\text {s }}$ to

Weight of Evidence ஏF Degree of Belief

> X L U N N A R W S F Y T
> M Y U N X T S B S R P C

Alan Turing

Outline

1. Probabilistic reasoning
2. Perceptual decisions: speed and accuracy
3. Optional: Sequential analysis, Wald's martingale, logistic choice function
4. Variance and covariance as signatures of neural computation
5. Confidence
6. Optional: Integration of prior probability \& evidence

Direction-Discrimination Task

Direction-Discrimination Task

Direction-Discrimination Task

Direction-Discrimination Task Reaction-time version

Direction selective neurons
Areas MT/V5 and MST

LIP activity during direction discrimination task

LIP activity during direction discrimination task

Roitman \& Shadlen, 2002 J. Neurosci.

Criterion to answer "Left"

Bound: choose RIGHT Accumulated $\left.\begin{array}{c}\text { evidence } \\ \text { Right-Left) }\end{array}\right]$

Bound: choose LEFT $\left.\begin{array}{c}\text { Accumulated } \\ \text { evidence } \\ \text { (Left-Right) }\end{array}\right]$

4-choice decisions

Churchland

Usher \& McClelland, 2001
Churchland, Kiani \& Shadlen, 2008

Outline

1. Probabilistic reasoning
2. Perceptual decisions: speed and accuracy
3. Optional: Sequential analysis, Wald's martingale, logistic choice function
4. Variance and covariance as signatures of neural computation
5. Confidence
6. Optional: Integration of prior probability \& evidence

Sequential analysis framework

$$
\begin{aligned}
&
\end{aligned}
$$

Choice probability \& decision time from bounded accumulation

Moment Generating Function

$$
\begin{aligned}
M_{X}(\theta) \equiv E\left[e^{\theta X}\right]=\int_{-\infty}^{\infty} f(x) e^{\theta x} d x & M_{X}^{\prime}(\theta)
\end{aligned}=\frac{d}{d \theta} E\left[e^{\theta X}\right], \quad=\frac{d}{d \theta} \int_{-\infty}^{\infty} f(x) e^{\theta x} d x
$$

Normal distribution

$$
\begin{aligned}
& M_{X}(\theta)=e^{\theta \mu+\frac{1}{2} \theta^{2} \sigma^{2}} \\
& \theta_{1}=-\frac{2 \mu}{\sigma^{2}} \\
& \quad \approx 2 k C \quad(k>0)
\end{aligned}
$$

Wald's Martingale

Wald's Martingale

$$
\begin{aligned}
& \text { Accumulation Wald's Martingale } \\
& \left.\begin{array}{rl}
Y_{E} & =0 \\
Z_{n+1}
\end{array} M_{0}, Y_{1}, Y_{2}, \ldots, Y_{n} Z_{0}=E[M-1-)^{n+1)}\left(\theta_{e}\right) e_{1}^{\theta Y_{n+1}} \mid Y_{0}, Y_{1}, Y_{2}, \ldots, Y_{n}\right] \\
& =E\left[M^{-1} \times \frac{1}{}(\theta)^{G\left(Y_{n}+X_{n+1}\right)}\right] \text { by the rule for generating } Y_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{2} M_{X}^{-1}(\theta) Z_{n} E\left[e^{\theta X_{n+1}}\right] \quad \text { because } Z_{n} \text { and } M_{X}(\theta) \text { are known } \\
& \begin{aligned}
& =Z_{n} \\
\vdots & \vdots \\
E\left[Z_{n}\right] & =E\left[M_{x}^{-n}(\theta) e^{\theta Y_{n}}\right]
\end{aligned} \\
& Y_{n}=\sum_{i=1}^{n} X_{n} \\
& Z_{n}=\frac{l^{\operatorname{l\theta } \gamma_{n}}}{M^{n}(\theta)}
\end{aligned}
$$

MGF of the bounded accumulation

Calculate two ways:
(i) by brute force from 2 possible valuec

$$
M_{\bar{\gamma}}(\theta)=E\left[e^{\theta \hat{\gamma}}\right]
$$

$$
\begin{aligned}
M_{\tilde{Y}}(\theta) & =E\left[e^{\theta \tilde{Y}}\right] \\
& =P_{+} e^{\theta A}+\left(1-P_{+}\right) e^{-\theta A}
\end{aligned}
$$

(ii) using Wald's Identity $E\left[M_{x}^{-n}(\theta) e^{\theta n}\right.$

$$
M_{\tilde{Y}}\left(\theta_{1}\right)=E\left[e^{\theta_{1} \tilde{Y}}\right]
$$

$$
=P_{+} e^{\theta_{1} A}+\left(1-P_{+}\right) e^{-\theta_{1} A}
$$

Define the stopped accum

$$
=1
$$

$\tilde{Z}=M_{x}^{-\bar{n}}(\theta) e^{\theta \tilde{z}}$
Wald's martingale, whe accumulation stops

$$
P_{+}=\frac{1-e^{-\theta_{1} A}}{e^{\theta_{1} A}-e^{-\theta_{1} A}}
$$

$E[\tilde{Z}]=E\left[Z_{n}\right] \quad$ optional stopping thed

$$
E\left[M_{-}^{-\bar{n}}(\theta) e^{\theta \dot{\gamma}}\right]=1
$$

$$
=\frac{1-e^{-\theta_{1} A}}{e^{-\theta_{1} A}\left(e^{\theta_{1} A}+1\right)\left(e^{\theta_{1} A}-1\right)}
$$

$E\left[e^{e^{, \hat{Y}}}\right]=1 \quad$ simplify at the special

$$
=\frac{1}{1+e^{\theta_{1} A}}
$$

Decision time

$$
\begin{array}{rlrl}
E\left[M_{x}^{-\tilde{n}}(\theta) e^{\theta \tilde{Y}}\right] & =1 \quad \text { Wald's identity } \\
\frac{d}{d \theta} E\left[M_{x}^{-\tilde{n}}(\theta) e^{\theta \tilde{Y}}\right] & =0 \\
& =E\left[e^{\theta \tilde{Y}} \tilde{Y} M_{x}^{-\tilde{n}}(\theta)-e^{\theta \tilde{r}} \tilde{n} M_{X}^{-1-\tilde{n}}(\theta) M_{X}^{\prime}(\theta)\right] \\
& =E[\tilde{Y}-\tilde{n} \mu] \quad \text { holds for } \theta=0 \\
E[\tilde{n}] & =\frac{E[\tilde{Y}]}{\mu} \quad(\text { for } \mu \neq 0) \\
& =\frac{\left(2 P_{+}-1\right) A}{\mu} \quad \text { recall that } \quad P_{+}=\frac{1}{1+e^{-2 k C A}} \\
& =\frac{A}{\mu}\left(\frac{2}{1+e^{\theta_{1} A}}-1\right) \\
& =\frac{A}{\mu}\left(\frac{1-e^{\theta_{1} A}}{1+e^{\theta_{1} A}}\right) \\
& =\frac{A}{\mu}\left(\frac{e^{-\frac{\theta_{1} A}{2}}-e^{\frac{\theta_{1} A}{2}}}{e^{-\frac{\theta_{1} A}{2}}+e^{\frac{\theta_{1} A}{2}}}\right) \quad \text { for the dots task } & E[t]=\frac{A}{k C} \tanh (k C A) \\
& =\frac{A}{\mu} \tanh \left(-\frac{\theta_{1} A}{2}\right) \quad \lim _{C \rightarrow 0} \frac{A}{k C} \tanh (k C A)=A^{2}
\end{array}
$$

Outline

1. Probabilistic reasoning
2. Perceptual decisions: speed and accuracy
3. Optional: Sequential analysis, Wald's martingale, logistic choice function
4. Variance and covariance as signatures of neural computation
5. Confidence
6. Optional: Integration of prior probability \& evidence

Doubly stochastic point processes

Law of total variance

$$
\operatorname{Var}[X]=\underbrace{\operatorname{Var}[\langle X \mid Y\rangle]}_{\substack{\text { variance of oonditional } \\ \text { expectation (NCE) }}}+\underbrace{\langle\operatorname{Var}[X \mid Y]\rangle}_{\substack{\text { enpectation of } \\ \text { condifional vainance }}}
$$

Applied to DSPPs

$$
\underbrace{\sigma_{N N_{i}}^{2}}_{\substack{\text { Total measured } \\ \text { variance }}}=\underbrace{\sigma_{\left\langle N_{i}\right.}^{2}}_{V C E}+\underbrace{\left\langle\sigma_{N \mid \lambda_{1}}^{2}\right\rangle}_{\substack{\text { Point process } \\ \text { variance (PVY) }}}
$$

Estimator of VCE

$$
s_{\left\langle N_{i}\right\rangle}^{2}=s_{N_{i}}^{2}-\phi \overline{N_{i}}
$$

Three analysis epochs

Pre-motion epoch

Firing
rate $(\mathrm{sp} / \mathrm{s}) 80-$

consistent with Basso \& Wurtz $(1997,1998)$

Pre-motion epoch

Firing

 rate $(\mathrm{sp} / \mathrm{s}) 80-$

Lower FR explained by mixture of states

Early motion viewing

Firing rate (sp / s)

Early motion viewing

Firing rate (sp / s)

Doubly stochastic point processes

Law of total covariance

$$
\operatorname{Cov}\left[N_{i}, N_{j}\right]=\underbrace{\operatorname{Cov}\left[\left\langle N_{i}, N_{j} \mid \lambda_{i}, \lambda_{j}\right\rangle\right]}_{\begin{array}{c}
\text { covoriance of } \\
\text { conditional expectation }
\end{array}}+\underbrace{\left\langle\operatorname{Cov}\left[N_{i}, N_{j} \mid \lambda_{i}, \lambda_{j}\right]\right\rangle}_{\begin{array}{c}
\text { expectation of } \\
\text { conditional covariance }
\end{array}}
$$

Doubly stochastic point processes

Law of total covariance

$$
\operatorname{Cov}\left[N_{i}, N_{j}\right]=\underbrace{\operatorname{Cov}\left[\left\langle N_{i}, N_{j} \mid \lambda_{i}, \lambda_{j}\right\rangle\right]}_{\begin{array}{c}
\text { covoriance of } \\
\text { conditional expectation }
\end{array}}+\underbrace{\left\langle\operatorname{Cov}\left[N_{i}, N_{j} \mid \lambda_{i}, \lambda_{j}\right]\right\rangle}_{\begin{array}{c}
\text { expectation of } \\
\text { conditional covariance }
\end{array}}
$$

Applied to DSPPs

$$
\left.=\begin{array}{c}
V C E+P P V \\
\operatorname{CovCE}+0
\end{array}\right\} \begin{aligned}
& i=j \\
& i \neq j
\end{aligned}
$$

Early motion viewing

Early motion viewing

Time from $1^{\text {st }}$ bin (ms)

Time from $1^{\text {st }}$ bin (ms)

Decision termination

VarCE 2

Decision termination

Decision termination

Summary of section

- VarCE and CorCE are useful tools
- Capture "variation in what is computed"
-Expose features of neural computations in decision making
e.g., integration, mixtures, termination bound, refutes change point and several plausible alternative models
- The main limitation is in estimating ϕ

Outline

1. Probabilistic reasoning
2. Perceptual decisions: speed and accuracy
3. Optional: Sequential analysis, Wald's martingale, logistic choice function
4. Variance and covariance as signatures of neural computation
5. Confidence
6. Optional: Integration of prior probability \& evidence

Post-decision wagering

based on Hampton (2001) PNAS

Kiani \& Shadlen (2009) Science 324:759-764.

Post-decision wagering

Kiani \& Shadlen (2009) Science 324:759-764.

Post-decision wagering

Kiani \& Shadlen (2009) Science 324:759-764.

Post-decision wagering

- without sure target

- with sure target
- without sure target

Choose left

Log odds of making the correct choice

Log odds of making the correct choice

Decline sure target
 $0 \quad 200 \quad 400 \quad 600 \quad 800$ Decision time (ms)

Decision variable

ne sure target
unuose sure target

Three free parameters:

- k , sensitivity coefficient
- B, bound height
$\bullet \theta$, criterion on log-odds correct 00
Decision time (ms)
- without sure target

Kiani \& Shadlen (2009) Science 324:759-764.

Conclusions from confidence experiment

- It is possible to study "degree of belief" in neurophysiology
- Bounded evidence accumulation unites 3 fundamental measures of choice behavior:
accuracy, response time, confidence
- Suggests probability is represented by firing rate \& elapsed time

Work on

Possible 'deg of be wagerino

