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We show that the information carriedby compound events in neural spike
trains—patterns of spikes across time or across a population of cells—
can be measured, independent of assumptions about what these patterns
might represent. By comparing the information carried by a compound
pattern with the information carried independently by its parts, we di-
rectly measure the synergy among these parts. We illustrate the use of
these methods by applying them to experiments on the motion-sensitive
neuron H1 of the �y’s visual system, where we con�rm that two spikes
close together in time carry far more than twice the information carried
by a single spike. We analyze the sources of this synergy and provide
evidence that pairs of spikes close together in time may be especially
important patterns in the code of H1.

1 Introduction

Throughout the nervous system, information is encoded in sequences of
identical action potentials or spikes. The representation of sense data by
these spike trains has been studied for 70 years (Adrian, 1928), but there
remain many open questions about the structure of this code. A full un-
derstanding of the code requires that we identify its elementary symbols
and characterize the messages that these symbols represent. Many different
possible elementary symbols have been considered, implicitly or explicitly,
in previous work on neural coding. These include the numbers of spikes in
time windows of �xed size and individual spikes themselves. In cells that
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produce bursts of action potentials, these bursts might be special symbols
that convey information in addition to that carried by single spikes. Yet an-
other possibility is that patterns of spikes—across time in one cell or across
a population of cells—can have a special signi�cance, a possibility that has
received renewed attention as techniques emerge for recording the activity
of many neurons simultaneously.

In many methods of analysis, questions about the symbolic structure of
the code are mixed with questions about what the symbols represent. Thus,
in trying to characterize the feature selectivity of neurons, one often makes
the a priori choice to measure the neural response as the spike count or
rate in a �xed window. Conversely, in trying to assess the signi�cance of
synchronous spikes from pairs of neurons, or bursts of spikes from a sin-
gle neuron, one might search for a correlation between these events and
some particular stimulus features. In each case, conclusions about one as-
pect of the code are limited by assumptions about another aspect. Here we
show that questions about the symbolic structure of the neural code can be
separated out and answered in an information-theoretic framework, using
data from suitably designed experiments. This framework allows us to ad-
dress directly the signi�cance of spike patterns or other compound spiking
events. How much information is carried by a compound event? Is there re-
dundancy or synergy among the individual spikes? Are particular patterns
of spikes especially informative?

Methods to assess the signi�cance of spike patterns in the neural code
share a common intuitive basis:

� Patterns of spikes can play a role in representing stimuli if and only if
the occurrence of patterns is linked to stimulus variations.

� The patterns have a special role only if this correlation between sensory
signals and patterns is not decomposable into separate correlations
between the signals and the pieces of the pattern, such as the individual
spikes.

We believe that these statements are not controversial. Dif�culties arise
when we try to quantify this intuitive picture: What is the correct measure of
correlation? How much correlation is signi�cant? Can we make statements
independent of models and elaborate null hypotheses?

The central claim of this article is that many of these dif�culties can
be resolved using ideas from information theory. Shannon (1948) proved
that entropy and information provide the only measures of variability and
correlation that are consistent with simple and plausible requirements. Fur-
ther, while it may be unclear how to interpret, for example, a 20% increase
in correlation between spike trains, an extra bit of information carried by
patterns of spikes means precisely that these patterns provide a factor-
of-two increase in the ability of the system to distinguish among differ-
ent sensory inputs. In this work, we show that there is a direct method
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of measuring the information (in bits) carried by particular patterns of
spikes under given stimulus conditions, independent of models for the
stimulus features that these patterns might represent. In particular, we can
compare the information conveyed by spike patterns with the information
conveyed by the individual spikes that make up the pattern and deter-
mine quantitatively whether the whole is more or less than the sum of its
parts.

While this method allows us to compute unambiguously how much in-
formation is conveyed by the patterns, it does not tell us what particular
message these patterns convey. Making the distinction between two issues,
the symbolic structure of the code and the transformation between inputs
and outputs, we address only the �rst of these two. Constructing a quanti-
tative measure for the signi�cance of compound patterns is an essential �rst
step in understanding anything beyond the single spike approximation, and
it is especially crucial when complex multi-neuron codes are considered.
Such a quantitative measure will be useful for the next stage of modeling
the encoding algorithm, in particular as a control for the validity of models.
This is a subject of ongoing work and will not be discussed here.

2 Information Conveyed by Compound Patterns

In the framework of information theory (Shannon, 1948), signals are gener-
ated by a source with a �xed probability distribution and encoded into
messages by a channel. The coding is in general probabilistic, and the
joint distribution of signals and coded messages determines all quanti-
ties of interest; in particular, the information transmitted by the channel
about the source is an average over this joint distribution. In studying a
sensory system, the signals generated by the source are the stimuli pre-
sented to the animal, and the messages in the communication channel
are sequences of spikes in a neuron or a population of neurons. Both the
stimuli and the spike trains are random variables, and they convey in-
formation mutually because they are correlated. The problem of quan-
tifying this information has been discussed from several points of view
(MacKay & McCulloch, 1952; Optican & Richmond, 1987; Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997; Strong, Koberle, de Ruyter van
Steveninck, & Bialek, 1998). Here we address the question of how much
information is carried by particular “events” or combinations of action
potentials.

2.1 Background. A discrete event E in the spike train is de�ned as a
speci�c combination of spikes. Examples are a single spike, a pair of spikes
separated by a given time, spikes from two neurons that occur in synchrony,
and so on. Information is carried by the occurrence of events at particular
times and not others, implying that they are correlated with some stim-
ulus features and not with others. Our task is to express the information
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conveyed, on average, by an event E in terms of quantities that are easily
measured experimentally.1

In experiments, as in nature, the animal is exposed to stimuli at each
instant of time. We can describe this sensory input by a function s(t0 ), which
may have many components to parameterize the time dependence of mul-
tiple stimulus features. In general, the information gained about s(t0 ) by
observing a set of neural responses is

I D
X

responses

Z
Ds(t0 )P[s(t0 ) & response] log2

¡
P[s(t0 ) & response]
P[s(t0 )]P[response]

¢
, (2.1)

where information is measured in bits. It is useful to note that this mutual
information can be rewritten in two complementary forms:

I D ¡
Z

Ds(t0 )P[s(t0 )] log2 P[s(t0 )]

C
X

responses
P[response]

Z
Ds(t0 )P[s(t0 ) |response] log2 P[s(t0 )|response]

D S[P(s)] ¡ hS[P(s|response)]iresponse, (2.2)

or

I D ¡
X

responses
P(response) log2 P(response)

C
Z

Ds(t0 )P[s(t0 )]
X

responses
P[response|s(t0)] log2 P[response|s(t0 )]

D S[P(response)] ¡ hS[P(response |s)]is, (2.3)

where S denotes the entropy of a distribution; by h¢ ¢ ¢is we mean an av-
erage over all possible values of the sensory stimulus, weighted by their
probabilities of occurrence, and similarly for h¢ ¢ ¢iresponses. In the �rst form,
equation 2.2, we focus on what the responses are telling us about the sen-
sory stimulus (de Ruyter van Steveninck & Bialek, 1988): different responses
point more or less reliably to different signals, and our average uncertainty
about the sensory signal is reduced by observing the neural response. In the
second form, equation 2.3, we focus on the variability and reproducibility
of the neural response (de Ruyter van Steveninck, Lewen, Strong, Koberle,

1 In our formulation, an event E is a random variable that can have several outcomes;
for example, it can occur at different times in the experiment. The information conveyed by
the event about the stimulus is an average over the joint distribution of stimuli and event
outcomes. One can also associate an information measure with individual occurrences of
events (DeWeese & Meister, 1998).The averageof this measure over the possible outcomes
is the mutual information, as de�ned by Shannon (1948) and used in this article.
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& Bialek, 1997; Strong et al., 1998). The range of possible responses provides
the system with a capacity to transmit information, and the variability that
remains when the sensory stimulus is speci�ed constitutes noise; the differ-
ence between the capacity and the noise is the information.

We would like to apply this second form to the case where the neural
response is a particular type of event. When we observe an event E, in-
formation is carried by the fact that it occurs at some particular time tE.
The range of possible responses is then the range of times 0 < tE < T in
our observation window. Alternatively, when we observe the response in a
particular small time bin of size D t, information is carried by the fact that
the event E either occurs or does not. The range of possible responses then
includes just two possibilities. Both of these points of view have an arbitrary
element: the choice of bin size D t and the window size T. Characterizing
the properties of the system, as opposed to our observation power, requires
taking the limit of high time resolution (D t ! 0) and long observation times
(T ! 1). As will be shown in the next section, in this limit, the two points
of view give the same answer for the information carried by an event.

2.2 Information and Event Rates. A crucial role is played by the event
rate rE(t), the probability per unit time that an event of type E occurs at
time t, given the stimulus history s(t0 ). Empirical construction of the event
rate rE(t) requires repetition of the same stimulus history many times, so
that a histogram can be formed (see Figure 1). For the case where events are
single spikes, this is the familiar time-dependent �ring rate or poststimulus
time histogram (see Figure 1c); the generalization to other types of events
is illustrated by Figures 1d and 1e. Intuitively, a uniform event rate implies
that no information is transmitted, whereas the presence of sharply de�ned
features in the event rate implies that much information is transmitted by
these events (see, for example, the discussion by Vaadia et al., 1995). We now
formalize this intuition and show how the average information carried by
a single event is related quantitatively to the time-dependent event rate.

Let us take the �rst point of view about the neural response variable, in
which the range of responses is described by the possible arrival times t
of the event. 2 What is the probability of �nding the event at a particular
time t? Before we know the stimulus history s(t0 ), all we can say is that the
event can occur anywhere in our experimental window of size T, so that
the probability is uniform P(response) D P(t) D 1/ T, with an entropy of
S[P(t)] D log2 T. Once we know the stimulus, we also know the event rate
rE(t), and so our uncertainty about the occurrence time of the event is re-
duced. Events will occur preferentially at times where the event rate is large,
so the probability distribution should be proportional to rE(t); with proper

2 We assume that the experiment is long enough so that a typical event is certain to
occur at some time.
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Figure 1: Generalized event rates in the stimulus-conditional response ensem-
ble. A time-dependent visual stimulus is shown to the �y (a), with the time
axis de�ned to be zero at the beginning of the stimulus. This stimulus runs for
10 s and is repeatedly presented 360 times. The responses of the H1 neuron to
60 repetitions are shown as a raster (b), in which each dot represents a single
spike. From these responses, time-dependent event rates rE(t) are estimated:
(c) the �ring rate (poststimulus time histogram); (d) the rate for spike pairs with
interspike time t D 3 § 1 ms and (e) for pairs with t D 17 § 1 ms (e). These rates
allow us to compute directly the information transmitted by the events, using
equation 2.5.
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normalization P(response |s) D P(t|s) D rE(t) /(TNrE). Then the conditional
entropy is

S[P(t|s)] D ¡
Z T

0
dt P(t|s) log2 P(t|s)

D ¡ 1
T

Z T

0
dt

rE(t)
NrE

log2

¡
rE(t)
NrET

¢
. (2.4)

In principleone should average this quantity over the distribution of stimuli
s(t0 ); however, if the time T is long enough and the stimulus history suf�-
ciently rich, the ensemble average and the time average are equivalent. The
validity of this assumption can be checked experimentally (see Figure 2c).
The reduction in entropy is then the gain in information, so

I(EI s) D S[P(t)] ¡ S[P(t|s)]

D
1
T

Z T

0
dt

¡
rE(t)

NrE

¢
log2

¡
rE(t)

NrE

¢
, (2.5)

or equivalently

I(EI s) D
½ ¡

rE(t)
NrE

¢
log2

¡
rE(t)

NrE

¢¾

s
, (2.6)

where here the average is over all possible value of s weighted by their
probabilities P(s).

In the second view, the neural response is a binary random variable,
sE 2 f0, 1g, marking the occurrence or nonoccurrence of an event of type E in
a small time bin of size D t. Suppose, for simplicity, that the stimulus takes on
a �nite set of values s with probabilities P(s). These in turn induce the event E
with probability pE(s) D P(sE D 1 |s) D rE(s)D t, with an average probability
for the occurrenceof the event NpE D

P
s P(s) rE(s)D t D NrED t. The information

is the difference between the prior entropy and the conditional entropy:
I(EI s) D S(s) ¡ hS(s |sE)i, where the conditional entropy is an average over
the two possible values of sE. The conditional probabilities are found from
Bayes’ rule,

P(s |sE D 1) D
P(s)pE(s)

NpE

P(s |sE D 0) D
P(s)(1 ¡ pE(s))

(1 ¡ NpE)
, (2.7)

and with these one �nds the information,

I(EI s) D ¡
X

s
P(s) log2 P(s) C

X

sED0,1

P(s|sE) log2 P(s |sE)

D
X

s
P(s)

µ
pE(s) log2

¡
pE(s)

NpE

¢
C (1 ¡ pE(s)) log2

¡
1 ¡ pE(s)

1 ¡ NpE

¢¶
. (2.8)
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Taking the limit D t ! 0, consistent with the requirement that the event
can occur at most once, one �nds the average information conveyed in a
small time bin; dividing by the average probability of an event, one obtains
equation 2.6 as the information per event.

Equation 2.6 and its time-averaged form, equation 2.5, are exact formulas
that are valid in any situation where a rich stimulus history can be presented
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repeatedly. It enables the evaluation of the information for arbitrarily com-
plex events, independent of assumptions about the encoding algorithm.
The information is an average over the joint distribution of stimuli and re-
sponses. But rather than constructing this joint distribution explicitly and
then averaging, equation 2.5 expresses the information as a direct empirical
average: by estimating the function rE(t) as a histogram, we are sampling the
distribution of the responses given a stimulus, whereas by integrating over
time, we are sampling the distribution of stimuli. This formula is general
and can be applied for different systems under different experimental con-
ditions. The numerical result (measured in bits) will, of course, depend on
the neural system as well as on the properties of the stimulus distribution.
The error bars on the measurement of the information are affected by the
�niteness of the data; for example, sampling must be suf�cient to construct
the rates rE(t) reliably. These and other practical issues in using equation 2.5
are illustrated in detail in Figure 2.

2.3 The Special Case of Single Spikes. Let us consider in more detail
the simple case where events are single spikes. The average information
conveyed by a single spike becomes an integral over the time-dependent
spike rate r(t),

I(1 spikeI s) D
1
T

Z T

0
dt

¡
r(t)

Nr

¢
log2

¡
r(t)

Nr

¢
. (2.9)

It makes sense that the information carried by single spikes should be re-
lated to the spike rate, since this rate as a function of time gives a complete

Figure 2: Facing page. Finite size effects in the estimation of the information
conveyed by single spikes. (a) Information as a function of the bin size D t used
for computing the time-dependent rate r(t) from all 360 repetitions (circles) and
from 100 of the repetitions (crosses). A linear extrapolation to the limit D t ! 0 is
shown for the case where all repetitions were used (solid line). (b) Information
as a function of the inverse number of repetitions N, for a �xed bin size D t D
2 ms. (c) Systematic errors due to �nite duration of the repeated stimulus s(t).
The full 10-second length of the stimulus was subdivided into segments of
duration T. Using equation 2.9 the information was calculated for each segment
and plotted as a function of 1 /T (circles). If the stimulus is suf�ciently long that
an ensemble average is well approximated by a time average, the convergence
of the information to a stable value as T ! 1 should be observable. Further,
the standard deviation of the information measured from different segments of
length T (error bars) should decrease as a square root law s / 1 /

p
T (dashed

line). These data provide an empirical veri�cation that for the distribution used
in this experiment, the repeated stimulus time is long enough to approximate
ergodic sampling.
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description of the “one-body” statistics of the spike train, in the same way
that the single particle density describes the one-body statistics of a gas
or liquid. This is true independent of any models or assumptions, and we
suggest the use of equations 2.9 and 2.5 to test directly in any given experi-
mental situation whether many body effects increase or reduce information
transmission.

We note that considerable attention has been given to the problem of
making accurate statistical models for spike trains. In particular, the sim-
plest model—the modulated Poisson process—is often used as a standard
against which real neurons are compared. It is tempting to think that Pois-
son behavior is equivalent to independent transmission of information by
successive spikes, but this is not the case (see below). Of course, no real neu-
ron is precisely Poisson, and it is not clear which deviations from Poisson
behavior are signi�cant. Rather than trying to �t statistical models to the
data and then to try to understand the signi�cance of spike train statistics for
neural coding, we see that it is possible to quantify directly the information
carried by single spikes and compound patterns. Thus, without reference
to statistical models, we can determine whether successive spikes carry in-
dependent, redundant, or synergistic information.

Several previous works have noted the relation between spike rate and
information, and the formula in equation 2.9 has an interesting history.
For a spike train generated by a modulated Poisson process, equation 2.9
provides an upper bound on information transmission (per spike) by the
spike train as a whole (Bialek, 1990). Even in this simple case, spikes do not
necessarily carry independent information: slow modulations in the �ring
rate can cause them to be redundant. In studying the coding of location by
cells in the rat hippocampus, Skaggs, McNaughton, Gothard, and Markus
(1993) assumed that successive spikes carried independent information,
and that the spike rate was determined by the instantaneous location. They
obtained equation 2.9 with the time average replaced by an average over
locations. DeWeese (1996) showed that the rate of information transmission
by a spike train could be expanded in a series of integrals over correlation
functions, where successive terms would be small if the number of spikes
per correlation time were small; the leading term, which would be exact if
spikes were uncorrelated, is equation 2.9. Panzeri, Biella, Rolls, Skaggs, and
Treves (1996) show that equation 2.9, multiplied by the mean spike rate to
give an information rate (bits per second), is the correct information rate
if we count spikes in very brief segments of the neural response, which is
equivalent to asking for the information carried by single spikes. For further
discussion of the relation to previous work, see appendix A.

A crucial point here is the generalization to equation 2.5, and this re-
sult applies to the information content of any point events in the neural
response—pairs of spikes with a certain separation, coincident spikes from
two cells, and so on—not just single spikes. In the analysis of experiments,
we will emphasize the use of this formula as an exact result for the infor-
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mation content of single events, rather than an approximate result for the
spike train as a whole, and this approach will enable us to address questions
concerning the structure of the code and the role played by various types
of events.

3 Experiments in the Fly Visual System

In this section, we use our formalism to analyze experiments on the move-
ment-sensitive cell H1 in the visual system of the blow�y Calliphora vicina.
We address the issue of the information conveyed by pairs of spikes in this
neuron, as compared to the information conveyed independently by sin-
gle spikes. The quantitative results of this section—information content in
bits, effects of synergy, and redundancy among spikes—are speci�c to this
system and to the stimulus conditions used. The theoretical approach, how-
ever, is valid generally and can be applied similarly to other experimental
systems, to �nd out the signi�cance of various patterns in single cells or in
a population.

3.1 Synergy Between Spikes. In the experiment (see appendix B for
details), the horizontal motion across the visual �eld is the input sensory
stimulus s(t), drawn from a probability distribution P[s(t)]. The spike train
recorded from H1 is the neural response. Figure 1a shows a segment of the
stimulus presented to the �y, and Figure 1b illustrates the response to many
repeated presentations of this segment. The histogram of spike times across
the ensemble of repetitions provides an estimate of the spike rate r(t) (see
Figure 1c), and equation 2.5 gives the information carried by a single spike,
I(1 spikeI s) D 1.53 § 0.05 bits. Figure 2 illustrates the details of how the
formula was used, with an emphasis on the effects of �niteness of the data.
In this experiment, a stimulus of length T D 10 sec was repeated 360 times.
As seen from Figure 2, the calculation converges to a stable result within
our �nite data set.

If each spike were to convey information independently, then with the
mean spike rate Nr D 37 spikes per second, the total information rate would
be Rinfo D 56 bits per second. We used the variability and reproducibility
of continuous segments in the neural response (de Ruyter van Steveninck
et al., 1997; Strong et al., 1998) to estimate the total information rate in the
spike train in this experiment and found that Rinfo D 75 bits per second.
Thus, the information conveyed by the spike train as a whole is larger than
the sum of contributions from individual spikes, indicating cooperative
information transmission by patterns of spikes in time. This synergy among
spikes motivates the search for especially informative patterns in the spike
train.

We consider compound events that consist of two spikes separated by
a time t , with no constraints on what happens between them. Figure 1
shows segments of the event rate rt (t) for t D 3 (§1) ms (see Figure 1d),
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Figure 3: Information about the signal transmitted by pairs of spikes, computed
from equation 2.5, as a function of the time separation between the two spikes.
The dotted line shows the information that would be transmitted by the two
spikes independently (twice the single-spike information).

and for t D 17 (§1) ms (see Figure 1e). The information carried by spike
pairs as a function of the interspike time t , computed from equation 2.5, is
shown in Figure 3. For large t , spikes contribute independent information,
as expected. This independence is established within approximately 30 to
40 ms, comparable to the behavioral response times of the �y (Land &
Collett, 1974). There is a mild redundancy (about 10–20%) at intermediate
separations and a very large synergy (up to about 130%) at small t .

Related results were obtained using the correlation of spike patterns with
stimulus features (de Ruyter van Steveninck & Bialek, 1988). There the infor-
mation carried by spikepatterns was estimated from the distribution of stim-
uli given each pattern, thus constructing a statistical model of what the pat-
terns “stand for” (see the details in appendix A). Since the time-dependent
stimulus is in general of high dimensionality, its distribution cannot be
sampled directly and some approximations must be made. de Ruyter van
Steveninck and Bialek (1988) made the approximation that patterns of a few
spikes encode projections of the stimulus onto low-dimensional subspaces,
and further that the conditional distributions P[s(t)|E] are gaussian. The in-
formation obtained with these approximations provides a lower bound to
the true information carried by the patterns, as estimated directly with the
methods presented here.



Synergy in a Neural Code 1543

3.2 Origins of Synergy. Synergy means, quite literally, that two spikes
together tell us more than two spikes separately. Synergistic coding is often
discussed for populations of cells, where extra information is conveyed
by patterns of coincident spikes from several neurons (Abeles, Bergmann,
Margalit, & Vaadia, 1993; Hop�eld, 1995; Meister, 1995; Singer & Gray, 1995).
Here we see direct evidence for extra information in pairs of spikes across
time. The mathematical framework for describing these effects is the same,
and a natural question is: What are the conditions for synergistic coding?

The average synergy Syn[E1, E2I s] between two events E1 and E2 is the
difference between the information about the stimulus s conveyed by the
pair and the information conveyed by the two events independently:

Syn[E1, E2I s] D I[E1, E2I s] ¡ (I[E1I s] C I[E2I s]). (3.1)

We can rewrite the synergy as:

Syn[E1, E2I s] D I[E1I E2 |s] ¡ I[E1I E2]. (3.2)

The �rst term is the mutual information between the events computed across
an ensemble of repeated presentations of the same stimulus history. It de-
scribes the gain in information due to the locking of compound event (E1, E2)
to particular stimulus features. If events E1 and E2 are correlated individ-
ually with the stimulus but not with one another, this term will be zero,
and these events cannot be synergistic on average. The second term is the
mutual information between events when the stimulus is not constrained
or, equivalently, the predictability of event E2 from E1. This predictability
limits the capacity of E2 to carry information beyond that already conveyed
by E1. Synergistic coding (Syn > 0) thus requires that the mutual informa-
tion among the spikes is increased by specifying the stimulus, which makes
precise the intuitive idea of “stimulus-dependent correlations” (Abeles et
al., 1993; Hop�eld, 1995; Meister, 1995; Singer & Gray, 1995).

Returning to our experimental example, we identify the events E1 and E2
as the arrivals of two spikes, and consider the synergy as a function of the
time t between them. In terms of event rates, we compute the information
carried by a pair of spikes separated by a time t , equation 2.5, as well as the
information carried by two individual spikes. The difference between these
two quantities is the synergy between two spikes, which can be written as

Syn(t ) D ¡ log2

¡ Nrt

Nr2

¢
C

1
T

Z T

0
dt

rt (t)
Nrt

log2

µ
rt (t)

r(t)r(t ¡ t )

¶

C
1
T

Z T

0
dt

µ
rt (t)

Nrt

C
rt (t C t )

Nrt
¡ 2

r(t)
Nr

¶
log2[r(t)]. (3.3)

The �rst term in this equation is the logarithm of the normalized correlation
function, and hence measures the rarity of spike pairs with separation t ;
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the average of this term over t is the mutual information between events
(the second term in equation 3.2). The second term is related to the local
correlation function and measures the extent to which the stimulus mod-
ulates the likelihood of spike pairs. The average of this term over t gives
the mutual information conditional on knowledge of the stimulus (the �rst
term in equation 3.2). The average of the third term over t is zero, and nu-
merical evaluation of this term from the data shows that it is negligible at
most values of t .

We thus �nd that the synergy between spikes is approximately a sum
of two terms, whose averages over t are the terms in equation 3.2. A spike
pair with a separation t then has two types of contributions to the extra
information it carries: the two spikes can be correlated conditional on the
stimulus, or the pair could be a rare and thus surprising event. The rarity
of brief pairs is related to neural refractoriness, but this effect alone is in-
suf�cient to enhance information transmission; the rare events must also
be related reliably to the stimulus. In fact, conditional on the stimulus, the
spikes in rare pairs are strongly correlated with each other, and this is visible
in Figure 1a: from trial to trial, adjacent spikes jitter together as if connected
by a stiff spring. To quantify this effect, we �nd for each spike in one trial
the closest spike in successive trials, and measure the variance of the arrival
times of these spikes. Similarly, we measure the variance of the interspike
times. Figure 4a shows the ratio of the interspike time variance to the sum of
the arrival time variances of the spikes that make up the pair. For large sep-
arations, this ratio is unity, as expected if spikes are locked independently
to the stimulus, but as the two spikes come closer, it falls below one-quarter.

Both the conditional correlation among the members of the pair (see Fig-
ure 4a) and the relative synergy (see Figure 4b) depend strongly on the inter-
spike separation. This dependence is nearly invariant to changes in image
contrast, although the spike rate and other statistical properties are strongly
affected by such changes. Brief spike pairs seem to retain their identity as
specially informative symbols over a range of input ensembles. If particular
temporal patterns are especially informative, then we would lose informa-
tion if we failed to distinguish among different patterns. Thus, there are two
notions of time resolution for spike pairs: the time resolution with which the
interspike time is de�ned and the absolute time resolution with which the
event is marked. Figure 5 shows that for small interspike times, the infor-
mation is much more sensitive to changes in the interspike time resolution
(open symbols) than to the absolute time resolution (�lled symbols). This is
related to the slope in Figure 2: in regions where the slope is large, events
should be �nely distinguished in order to retain the information.

3.3 Implications of Synergy. The importance of spike timing in the neu-
ral code has been under debate for some time now. We believe that some
issues in this debate can be clari�ed using a direct information-theoretic ap-
proach. Following MacKay and McCulloch (1952), we know that marking
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Figure 4: (a) Ratio between the variance of interspike time and the sum of vari-
ances of the two spike times. Variances are measured across repeated presenta-
tions of same stimulus, as explained in the text. This ratio is plotted as a func-
tion of the interspike time t for two experiments with different image contrast.
(b) Extra information conveyed cooperatively by pairs of spikes, expressed as a
fraction of the information conveyed by the two spikes independently. While the
single-spike information varies with contrast (1.5 bits per spike for C D 0.1 com-
pared to 1.3 bits per spike for C D 1), the fractional synergy is almost contrast
independent.

spike arrival times with higher resolution provides an increased capacity
for information transmission. The work of Strong et al. (1998) shows that
for the �y’s H1 neuron, the increased capacity associated with spike timing
indeed is used with nearly constant ef�ciency down to millisecond resolu-
tion. This ef�ciency can be the result of a tight locking of individual spikes
to a rapidly varying stimulus, and it could also be the result of temporal
patterns providing information beyond rapid rate modulations. The anal-
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Figure 5: Information conveyed by spike pairs as a function of time resolution.
An event—pair of spikes—can be described by two times: the separation be-
tween spikes (relative time) and the occurrence time of the event with respect
to the stimulus (absolute time). The information carried by the pair depends
on the time resolution in these two dimensions, both speci�ed by the bin size
D t along the abscissa. Open symbols are measurements of the information for
a �xed 2 ms resolution of absolute time and a variable resolution D t of relative
time. Closed symbols correspond to a �xed 2 ms resolution of relative time and
a variable resolution D t of absolute time. For short intervals, the sensitivity to
coarsening of the relative time resolution is much greater than to coarsening of
the absolute time resolution. In contrast, sensitivity to relative and absolute time
resolutions is the same for the longer, nonsynergistic, interspike separations.

ysis given here shows that for H1, pairs of spikes can provide much more
information than two individual spikes, and information transmission is
much more sensitive to the relative timing of spikes than to their absolute
timing. The synergy is an inherent property of particular spike pairs, as it
persists when averaged over all occurrences of the pair in the experiment.

One may ask about the implication of synergy to behavior. Flies can
respond to changes in a motion stimulus over a time scale of approximately
30 to 40 ms (Land & Collett, 1974). We have found that the spike train of H1
as a whole conveyed about 20 bits per second more than the information
conveyed independently by single spikes (see Section 3.1). This implies that
over a behavioral response time, synergistic effects provide about 0.8 bit
of additional information, equivalent to almost a factor of two in resolving
power for distinguishing different trajectories of motion across the visual
�eld.
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4 Summary

Information theory allows us to measure synergy and redundancy among
spikes independent of the rules for translating between spikes and stimuli.
In particular, this approach tests directly the idea that patterns of spikes
are special events in the code, carrying more information than expected by
adding the contributions from individual spikes. It is of practical impor-
tance that the formulas rely on low-order statistical measures of the neural
response, and hence do not require enormous data sets to reach meaningful
conclusions. The method is of general validity and is applicable to patterns
of spikes across a population of neurons, as well as across time. Speci�c
results (existence of synergy or redundancy, number of bits per spike, etc.)
depend on the neural system as well as on the stimulus ensemble used in
each experiment.

In our experiments on the �y visual system, we found that an event
composed of a pair of spikes can carry far more than the information carried
independently by its parts. Two spikes that occur in rapid succession appear
to be special symbols that have an integrity beyond the locking of individual
spikes to the stimulus. This is analogous to the encoding of sounds in written
English: each of the compound symbols th, sh, and ch stands for sounds that
are not decomposable into sounds represented by each of the constituent
letters. For spike pairs to act effectively as special symbols, mechanisms
for “reading” them must exist at subsequent levels of processing. Synaptic
transmission is sensitive to interspike times in the 2–20 ms range (Magelby,
1987), and it is natural to suggest that synaptic mechanisms on this timescale
play a role in such reading. Recent work on the mammalian visual system
(Usrey, Reppas, & Reid, 1998) provides direct evidence that pairs of spikes
close together in time can be especially ef�cient in driving postsynaptic
neurons.

Appendix A: Relation to Previous Work

Patterns of spikes and their relation to sensory stimuli have been quanti�ed
in the past using correlation functions. The event rates that we have de�ned
here, which are connected directly to the information carried by patterns
of spikes through equation 2.5, are just properly normalized correlation
functions. The event rate for pairs of spikes from two separate neurons is
related to the joint poststimulus time histogram (PSTH),de�ned by Aertsen,
Gerstein, Habib, and Palm (1989; Vaadia et al., 1995). Making this connection
explicit is also an opportunity to see how the present formalism applies to
events de�ned across two cells.

Consider two cells, A and B, generating spikes at times ftA
i g and ftB

i g,
respectively. It will be useful to think of the spike trains as sums of unit
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impulses at the spike times,

r A(t) D
X

i

d(t ¡ tA
i ) (A.1)

r B(t) D
X

i

d(t ¡ tB
i ). (A.2)

Then the time-dependent spike rates for the two cells are

rA(t) D hr A(t)itrials, (A.3)

rB(t) D hr B(t)itrials, (A.4)

where h¢ ¢ ¢itrials denotes an average over multiple trials in which the same
time-dependent stimulus s(t0 ), or the same motor behavior observed. These
spike rates are the probabilities per unit time for the occurrence of a single
spike in either cell A or cell B, also called the PSTH. We can de�ne the
probability per unit time for a spike in cell A to occur at time t and a spike
in cell B to occur at time t0 , and this will be the joint PSTH,

JPSTHAB(t, t0 ) D hr A(t)r B(t0 )itrials. (A.5)

Alternatively, we can consider an event E de�ned by a spike in cell A at
time t and a spike in cell B at time t ¡ t , with the relative time t measured
with a precision of D t . Then the rate of these events is

rE(t) D
Z D t /2

¡D t /2
dt0 JPSTHAB(t, t ¡ t C t0 ) (A.6)

¼ D tJPSTHAB(t, t ¡ t ), (A.7)

where the last approximation is valid if our time resolution is suf�ciently
high. Applying our general formula for the information carried by single
events, equation 2.5, the information carried by pairs of spikes from two cells
can be written as an integral over diagonal “strips” of the JPSTH matrix,

I(EIs) D
1
T

Z T

0
dt

JPSTHAB(t, t ¡ t )

hJPSTHAB(t, t ¡ t )it
log2

"
JPSTHAB(t, t ¡ t )

hJPSTHAB(t, t ¡ t )it

#
, (A.8)

where hJPSTHAB(t, t¡t )it is an average of the JPSTH over time; this average
is equivalent to the standard correlation function between the two spike
trains.

The discussion by Vaadia et al. (1995) emphasizes that modulations of
the JPSTH along the diagonal strips allow correlated �ring events to convey
information about sensory signals or behavioral states, and this information
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is quanti�ed by equation A.8. The information carried by the individual
cells is related to the corresponding integrals over spike rates, equation 2.9.
The difference between the the information conveyed by the compound
spiking events E and the information conveyed by spikes in the two cells
independently is precisely the synergy between the two cells at the given
time lag t . For t D 0, it is the synergy—or extra information—conveyed by
synchronous �ring of the two cells.

We would like to connect this approach with previous work that focused
on how events reduce our uncertainty about the stimulus (de Ruyter van
Steveninck & Bialek, 1988). Before we observe the neural response, all we
know is that stimuli are chosen from a distribution P[s(t0 )]. When we ob-
serve an event E at time tE, this should tell us something about the stimulus
in the neighborhood of this time, and this knowledge is described by the
conditional distribution P[s(t0 )|tE]. If we go back to the de�nition of the mu-
tual information between responses and stimuli, we can write the average
information conveyed by one event in terms of this conditional distribution,

I(EI s) D
Z

Ds(t0 )
Z

dtEP[s(t0 ), tE] log2

¡
P[s(t0 ), tE]

P[s(t0 )]P[tE]

¢

D
Z

dtEP[tE]
Z

Ds(t0 )P[s(t0 ) |tE] log2

¡
P[s(t0 ) |tE]

P[s(t0 )]

¢
. (A.9)

If the system is stationary, then the coding should be invariant under time
translations:

P[s(t0 ) |tE] D P[s(t0 C D t0 ) |tE C D t0]. (A.10)

This invariance means that the integral over stimuli in equation A.9 is inde-
pendent of the event arrival time tE, so we can simplify our expression for
the information carried by a single event,

I(EI s) D
Z

dtEP[tE]
Z

Ds(t0 )P[s(t0 ) |tE] log2

¡
P[s(t0 ) |tE]

P[s(t0 )]

¢

D
Z

Ds(t0 )P[s(t0 ) |tE] log2

¡
P[s(t0 ) |tE]

P[s(t0 )]

¢
. (A.11)

This formula was used by de Ruyter van Steveninck and Bialek (1988). To
connect with our work here, we express the information in equation A.11
as an average over the stimulus,

I(EI s) D
½ ¡

P[s(t0) |tE]
P[s(t0 )]

¢
log2

¡
P[s(t0 )|tE]

P[s(t0 )]

¢¾

s
. (A.12)

Using Bayes’ rule,

P[s(t0 ) |tE]
P[s(t0 )]

D
P[tE |s(t0 )]

P[tE]
D

rE(tE)
NrE

, (A.13)
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where the last term is a result of the distributions of event arrival times being
proportional to the event rates, as de�ned above. Substituting this back to
equation A.11, one �nds equation 2.6.

Appendix B: Experimental Setup

In the experiment, we used a female blow�y, which was a �rst-generation
offspring of a wild �y caught outside. The �y was put inside a plastic tube
and immobilized with wax, with the head protruding out. The proboscis
was left free so that the �y could be fed regularly with some sugar water.
A small hole was cut in the back of the head, close to the midline on the
right side. Through this hole, a tungsten electrode was advanced into the
lobula plate. This area, which is several layers back from the compound eye,
includes a group of largemotion-detector neurons with wide receptive �elds
and strong direction selectivity. We recorded spikes extracellularly from one
of these, the contralateral H1 neuron, Franceschini, Riehle & le Nestour,
1989; Hausen & Egelhaaf, 1989). The electrode was positioned such that
spikes from H1 could be discriminated reliably and converted into pulses
by a simple threshold discriminator. The pulses were fed into a CED 1401
interface (Cambridge Electronic Design), which digitized the spikes at 10 m s
resolution. To keep exact synchrony over the duration of the experiment,
the spike timing clock was derived from the same internal CED 1401 clock
that de�ned the frame times of the visual stimulus.

The stimulus was a rigidly moving bar pattern, displayed on a Tektronix
608 high-brightness display. The radiance at average intensity NI was about
180 mW/(m2 £ sr), which amounts to about 5 £104 effectively transduced
photons per photoreceptor per second (Dubs, Laughlin, & Srinivasan, 1984).
The bars were oriented vertically, with intensities chosen at random to be
NI(1 § C), where C is the contrast. The distance between the �y and the screen
was adjusted so that the angular subtense of a bar equaled the horizontal
interommatidial angle in the stimulated part of the compound eye. This set-
ting was found by determining the eye’s spatial Nyquist frequency through
the reverse reaction (Götz, 1964) in the response of the H1 neuron. For this
�y, the horizontal interommatidial angle was 1.45 degrees, and the distance
to the screen 105 mm. The �y viewed the display through a round 80 mm
diameter diaphragm, showing approximately 30 bars. From this we esti-
mate the number of stimulated ommatidia in the eye’s hexagonal raster to
be about 612.

Frames of the stimulus pattern were refreshed every 2 ms, and with each
new frame, the pattern was displayed at a new position. This resulted in an
apparent horizontal motion of the bar pattern, which is suitable to excite the
H1 neuron. The pattern position was de�ned by a pseudorandom sequence,
simulating independent random displacements at each time step, uniformly
distributed between ¡0.47 degrees and C0.47 degrees (equivalent to ¡0.32
to C0.32 omm, horizontal ommatidial spacings). This corresponds to a dif-
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fusion constant of 18.1(±)2 per second or 8.6 omm2 per second. The sequence
of pseudorandom numbers contained a repeating part and a nonrepeating
part, each 10 seconds long, with the same statistical parameters. Thus, in
each 20 second cycle, the �y saw a 10 second movie that it had seen 20
seconds before, followed by a 10 second movie that was generated inde-
pendently.
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