
Today's Agenda

- ◆ Course Info and Logistics
- **♦** Motivation
 - ⇒ What is Computational Neuroscience?
 - ⇒Illustrative Examples
- → Neurobiology 101: Neurons and Networks

Course Information

- ♦ Browse class web page for syllabus and course information:
 - http://www.cs.washington.edu/education/courses/528/
- ◆ Lecture slides will be made available on the website
- Textbooks
 - ❖ Required:

Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems by P. Dayan & L. Abbott

R. Rao, 528 Lecture 1

3

4

Course Topics

- ◆ Descriptive Models of the Brain
 - ⇒ How is information about the external world *encoded* in neurons and networks? (Chapters 1 and 2)
 - → How can we *decode* neural information? (Chapters 3 and 4)
- ◆ Mechanistic Models of Brain Cells and Circuits
 - ⇒ How can we reproduce the behavior of a *single neuron* in a computer simulation? (Chapters 5 and 6)
 - ⇒ How do we model a *network* of neurons? (Chapter 7)
- **♦** *Interpretive Models of the Brain*
 - ❖ Why do brain circuits operate the way they do?
 - ➡ What are the *computational principles* underlying their operation? (Chapters 7-10)

Course Goals

- ♦ General Goals: Be able to
 - 1. Quantitatively describe what a given component of a neural system is doing based on experimental data
 - 2. Simulate on a computer the behavior of neurons and networks in a neural system
 - 3. Formulate computational principles underlying the operation of neural systems
- ♦ We would like to enhance *interdisciplinary cross-talk*

```
Neuroscience Computing and Engineering
(Experiments, data, (Computational principles, algorithms, simulation software/hardware, ...)
```

R. Rao, 528 Lecture 1 5

Workload and Grading

- ◆ Course grade (out of 4.0) will be based on homeworks and a final group project according to:
 - → Homeworks: 70%
 - ⇒ Final Group Project: 30%
- No midterm or final
- → Homework exercises: Either written or Matlab-based
 ⇒ Go over Matlab tutorials and homework on class website
- ◆ Group Project: As part of a group of 1-3 persons, investigate a "mini-research" question using methods from this course
 - ⇒ Each group will submit a report and give a presentation

Let's begin...

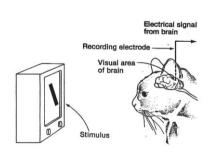
What is Computational Neuroscience?

R. Rao, 528 Lecture 1

7

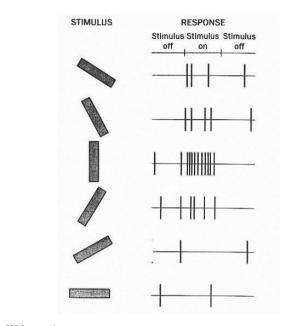
Computational Neuroscience

- "The goal of computational neuroscience is to explain in computational terms how brains generate behaviors" (Sejnowski)
- ◆ Computational neuroscience provides tools and methods for "characterizing what nervous systems do, determining how they function, and understanding why they operate in particular ways" (Dayan and Abbott)
 - Descriptive Models (What)


 - ❖ Interpretive Models (Why)

An Example: "Receptive Fields"

♦ What is the *receptive field* of a brain cell (neuron)?
♦ Any ideas?


R. Rao, 528 Lecture 1

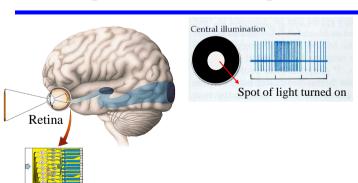
Recording the Responses of a Neuron in an Intact Brain

(Hubel and Wiesel, c. 1965)

R. Rao, 528 Lecture 1

Receptive Field

- ◆ What is the *receptive field* of a brain cell (neuron)?
- → <u>Classical Definition</u>: The region of sensory space that activates a neuron (Hartline, 1938)
 - Example: Region on the retina that activates a visual cortex cell
- ◆ <u>Current Definition</u>: *Specific properties* of a sensory stimulus that generate a strong response from the cell
 - Example: A bar of light that turns on at a particular orientation and location on the retina

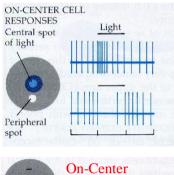

An Example: Cortical Receptive Fields

Let's look at:

- I. A *Descriptive Model* of Receptive Fields
- II. A Mechanistic Model of Receptive Fields
- III. An Interpretive Model of Receptive Fields

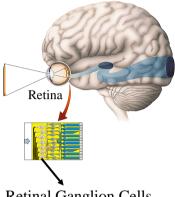
R. Rao, 528 Lecture 1

I. Descriptive Model of Receptive Fields

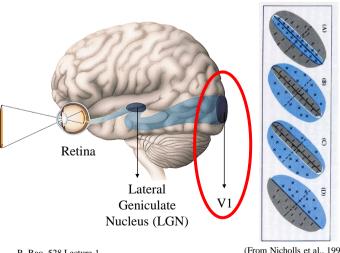


Retinal Ganglion Cells

Output responses (spike trains) from a Retinal Ganglion Cell


I. Descriptive Model of Receptive Fields

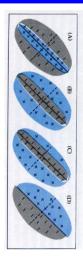
Mapping a retinal receptive field with spots of light


R. Rao, 528 Lecture 1

Retinal Ganglion Cells

15

Descriptive Models: Cortical Receptive Fields

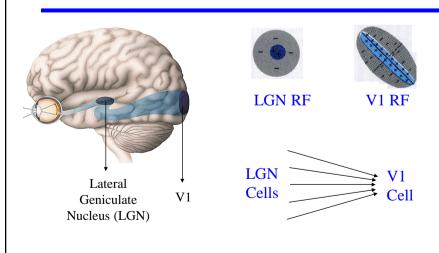

Examples of receptive fields in primary visual cortex (V1)

R. Rao, 528 Lecture 1

(From Nicholls et al., 1992)

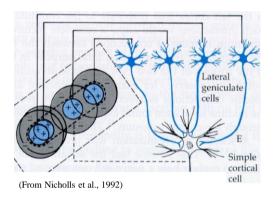
II. Mechanistic Model of Receptive Fields

→ The Question: How are receptive fields constructed using the neural circuitry of the visual cortex?



How are these *oriented* receptive fields obtained?

R. Rao, 528 Lecture 1


17

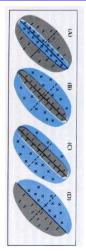
II. Mechanistic Model of Receptive Fields: V1

R. Rao, 528 Lecture 1

II. Mechanistic Model of Receptive Fields: V1

Model suggested by Hubel & Wiesel in the 1960s: V1 RFs are created from converging LGN inputs

Center-surround LGN RFs are *displaced along* preferred orientation of V1 cell

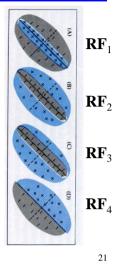

This simple model is still controversial!

R. Rao, 528 Lecture 1

19

III. Interpretive Model of Receptive Fields

→ The Question: Why are receptive fields in V1 shaped in this way?



What are the computational advantages of such receptive fields?

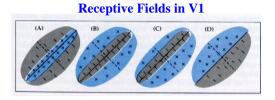
III. Interpretive Model of Receptive Fields

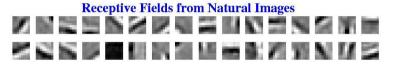
- **♦** Computational Hypothesis: Suppose the goal is to represent images as faithfully and efficiently as possible using neurons with receptive fields **RF**₁, **RF**₂, etc.
- → Given image **I**, want to reconstruct **I** using neural responses $r_1, r_2 \dots$:

$$\hat{\mathbf{I}} = \sum_{i} \mathbf{R} \mathbf{F}_{i} r_{i}$$

21

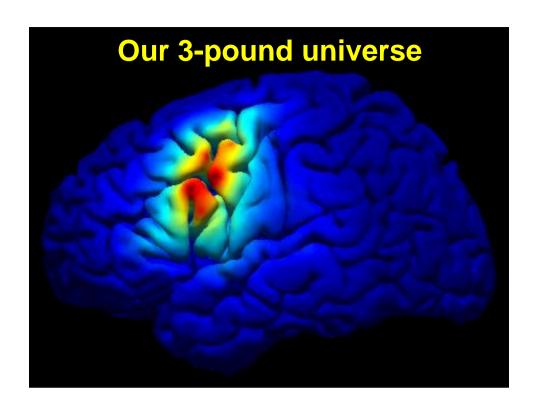
III. Interpretive Model of Receptive Fields

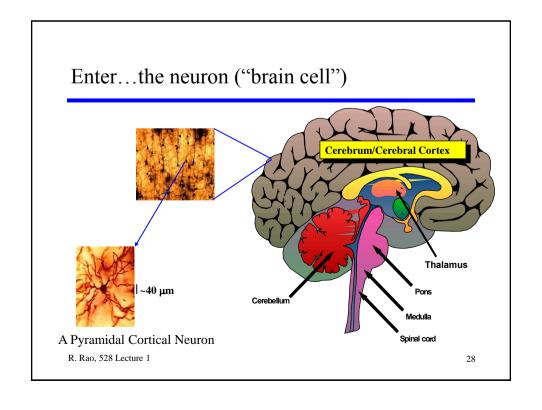

◆ Start out with random **RF**; and run your algorithm on natural images



III. Interpretive Model of Receptive Fields

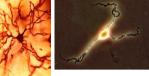
◆ Conclusion: The brain may be trying to find faithful and efficient representations of an animal's natural environment



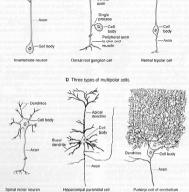

R. Rao, 528 Lecture 1 23

We will explore a variety of *Descriptive*, *Mechanistic*, and *Interpretive* models throughout this course

Neurobiology 101: Brain regions, neurons, and synapses



The Neuronal Zoo



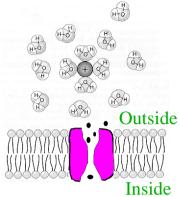
Neuron from the Neuron from **Thalamus** Cerebral Cortex

Neuron from the Cerebellum

From Kandel, Schwartz, Jessel, Principles of Neural Science, 3rd edn., 1991, pg. 21

Neuron Doctrine:

"The neuron is the appropriate basis for understanding the computational and functional properties of the brain"


First suggested in 1891 by Waldeyer

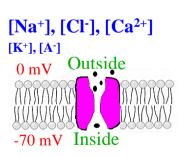
R. Rao, 528 Lecture 1

The Idealized Neuron Input (axons from other Myelinated axon neurons) Axon hillock Output Spike Graded EPSP Trigger Conducted all-or-none spike (conduction of spike to next cell) all-or-none (EPSP = Excitatory Post-Synaptic spike initiated Potential) R. Rao, 528 Lecture 1 30

What is a Neuron?

- → A "leaky bag of charged liquid"
- → Contents of the neuron enclosed within a *cell membrane*
- ◆ Cell membrane is a *lipid* bilayer
 - ⇒ Bilayer is <u>impermeable</u> to charged ion species such as Na⁺, Cl⁻, K⁺, and Ca²⁺
 - <u>Solution</u> <u>S</u>

From Kandel, Schwartz, Jessel, Principles of Neural Science, 3rd edn., 1991, pg. 67


R. Rao, 528 Lecture 1

31

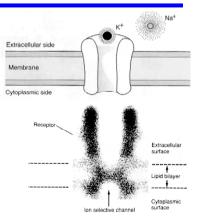
The Electrical Personality of a Neuron

- ◆ Each neuron maintains a potential difference across its membrane
 - Inside is −70 to −80 mV relative to outside

 - □ Ionic pump maintains -70 mV difference by expelling Na⁺ out and allowing K⁺ ions in

[K⁺], [A⁻] [Na⁺], [Cl⁻], [Ca²⁺]

Influencing a Neuron's Electrical Personality

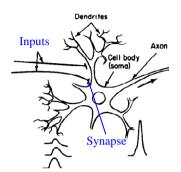

How can the electrical potential be changed in local regions of a neuron?

R. Rao, 528 Lecture 1 33

Ionic Channels: The Gatekeepers

- Proteins in membranes act as channels that allow specific ions to pass through.
 - ⇒ E.g. Pass K⁺ but not Cl⁻ or Na⁺
- ◆ These "ionic channels" are gated

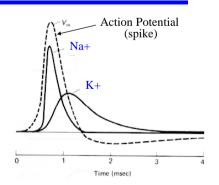
 - Chemically-gated: Binding to a chemical causes channel to open
 - Mechanically-gated: Sensitive to pressure or stretch



From Kandel, Schwartz, Jessel, Principles of Neural Science, 3rd edn., 1991, pgs. 68 & 137

34

Gated Channels allow Neuronal Signaling


- ◆ Inputs from other neurons → chemically-gated channels (at "synapses") → Changes in local membrane potential
- ◆ This causes opening/closing of voltage-gated channels in dendrites, body, and axon, resulting in depolarization (positive change in voltage) or hyperpolarization (negative change)

R. Rao, 528 Lecture 1

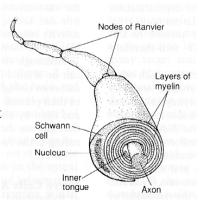
The Output of a Neuron: Action Potentials

- Voltage-gated channels cause action potentials (spikes)
 - 1. Strong depolarization causes rapid *Na*⁺ *influx* until channels inactivate
 - 2. *K*⁺ *outflux* restores membrane potential
- ◆ Positive feedback causes spike

From Kandel, Schwartz, Jessel, Principles of Neural Science, 3rd edn., 1991, pg. 110

R. Rao, 528 Lecture 1

Propagation of a Spike along an Axon

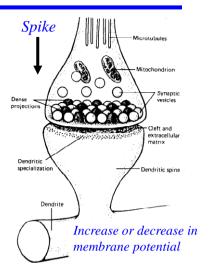

R. Rao, 528 Lecture 1

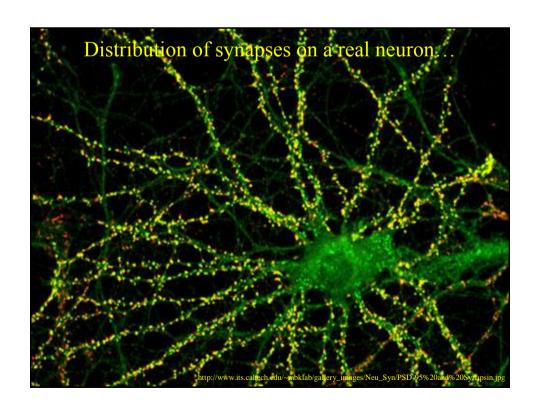
From: http://psych.hanover.edu/Krantz/neural/actpotanim.html

37

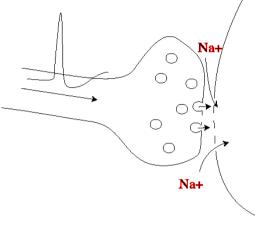
Active Wiring: Myelination of axons

- → Myelin due to Schwann cells (aka glia) wrap axons and enables long-range spike communication
 - Action potential "hops" from one non-myelinated region ("node of Ranvier") to the next
 - "Active wire" allows lossless signal propagation, unlike electric signals in a copper wire



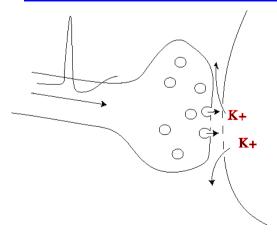

From Kandel, Schwartz, Jessel, Principles of Neural Science, 3rd edn., 1991, pgs. 23 & 44

R. Rao, 528 Lecture 1


Communication between Neurons: Synapses

- ★ <u>Synapses</u> are the "connections" between neurons
 - Electrical synapses (gap junctions)
 - Chemical synapses (use neurotransmitters)
- → Synapses can be <u>excitatory</u> or <u>inhibitory</u>
- ◆ Synapse Doctrine: Synapses are the basis for memory and learning

An **Excitatory** Synapse



Input spike →
Neurotransmitter
release →
Binds to Na
channels (which
open) →
Na+ influx →
Depolarization due
to EPSP (excitatory
postsynaptic
potential)

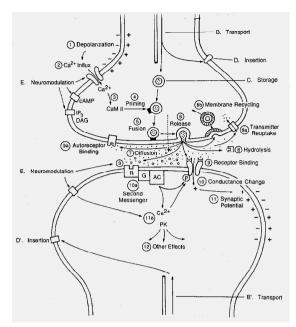
R. Rao, 528 Lecture 1

41

An **Inhibitory** Synapse

Input spike →
Neurotransmitter
release →
Binds to K
channels →
K+ leaves cell →
Hyperpolarization due
to IPSP (inhibitory
postsynaptic potential)

R. Rao, 528 Lecture 1


Down in the Synaptic Engine Room

A reductionist's dream! (or nightmare?)

Note: Even this is a simplification!

From Kandel, Schwartz, Jessel, Principles of Neural Science, 3rd edn., 1991

R. Rao, 528 Lecture 1

43

Synaptic plasticity: Adapting the connections

- → Long Term Potentiation (LTP): Increase in synaptic strength that lasts for several hours or more
 - Measured as an increase in the excitatory postsynaptic potential (EPSP) caused by presynaptic spikes

LTP observed as an increase in size or slope of EPSP for the same presynaptic input

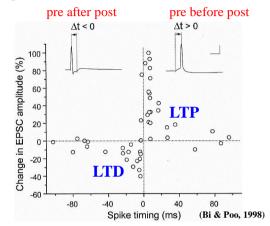
EPSP

R. Rao, 528 Lecture 1

Types of Synaptic Plasticity

- ★ Long Term Potentiation (LTP): Increase in synaptic strength that lasts for several hours or more
- → Long Term Depression (LTD): Reduction in synaptic strength that lasts for several hours or more

R. Rao, 528 Lecture 1 45

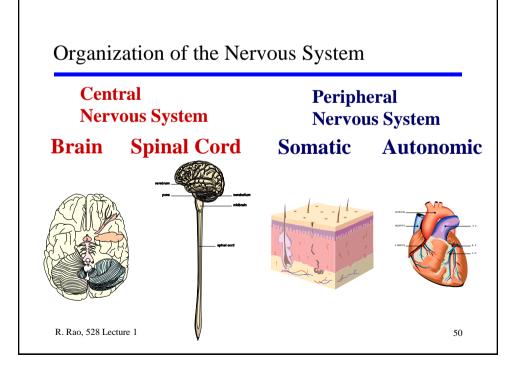

Example of measured synaptic plasticity

(From: http://www.nature.com/npp/journal/v33/n1/fig_tab/1301559f1.html)

Spike-Timing Dependent Plasticity

◆ Amount of LTP/LTD depends on <u>relative timing</u> of pre & postsynaptic spikes

R. Rao, 528 Lecture 1


47

We seem to know a lot about channels, single neurons, and synapses...

What do we know about how networks of neurons give rise to perception, behavior, and consciousness?

Not as much

Next: Brain organization and information processing in networks of neurons

Somatic Nervous System

These are nerves that connect to voluntary skeletal muscles and to sensory receptors

Afferent Nerve Fibers (incoming)

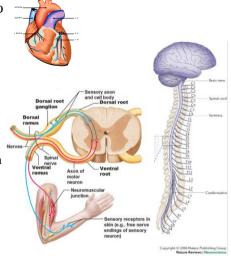
Axons that carry info away from the periphery to the CNS

Efferent Nerve Fibers (outgoing)

Axons that carry info from the CNS outward to the periphery

R. Rao, 528 Lecture 1

51


Autonomic and Central Nervous System

<u>Autonomic</u>: Nerves that connect to the heart, blood vessels, smooth muscles, and glands

 $\underline{\mathbf{CNS}} = \mathbf{Brain} + \mathbf{Spinal} \ \mathbf{Cord}$

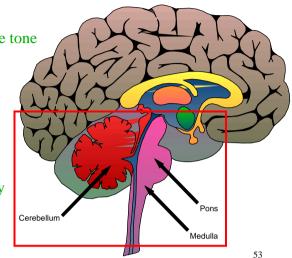
Spinal Cord:

- Local feedback loops control reflexes
- Descending motor control signals from brain activate spinal motor neurons
- Ascending sensory axons convey sensory information from muscles and skin back to the brain

Major Brain Regions: Brain Stem & Cerebellum

<u>Medulla</u>

Controls breathing, muscle tone and blood pressure


Pons

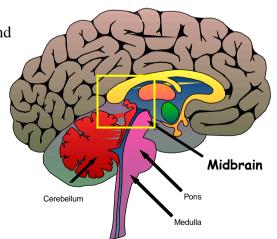
Connected to the cerebellum & involved in sleep and arousal

Cerebellum

Coordination of voluntary movements and sense of equilibrium

R. Rao, 528 Lecture 1

Major Brain Regions: Midbrain & Retic. Formation

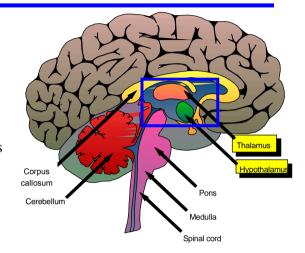

Midbrain

Eye movements, visual and auditory reflexes

Reticular Formation

Modulates muscle reflexes, breathing & pain perception. Also regulates sleep, wakefulness & arousal

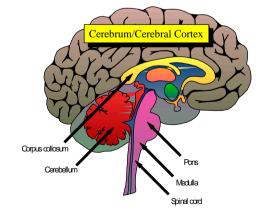
R. Rao, 528 Lecture 1


Major Brain Regions: Thalamus & Hypothalamus

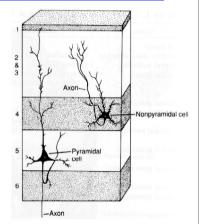
Thalamus

"Relay station" for all sensory info (except smell) to the cortex

Hypothalamus


Regulates basic needs fighting, fleeing, feeding, and mating

R. Rao, 528 Lecture 1 55


Major Brain Regions: Cerebral Hemispheres

- Consists of: <u>Cerebral</u> <u>cortex</u>, <u>basal ganglia</u>, <u>hippocampus</u>, and <u>amygdala</u>
- Involved in perception and motor control, cognitive functions, emotion, memory, and learning

Cerebral Cortex: A Layered Sheet of Neurons

- **→** Cerebral Cortex: Convoluted surface of cerebrum about 1/8th of an inch thick
- **♦** Six layers of neurons
- ◆ Approximately 30 billion neurons
- ◆ Each nerve cell makes about 10,000 synapses: approximately 300 trillion connections in total

From Kandel, Schwartz, Jessel, Principles of Neural Science, 3rd edn., 1991, pgs.

R. Rao, 528 Lecture 1

57

How do all of these brain regions interact to produce cognition and behavior?

Don't know fully yet!

But inching closer based on electrophysiological, imaging, molecular, psychophysical, anatomical and lesion (brain damage) studies...

R. Rao, 528 Lecture 1 59

Neural versus Digital Computing

- **♦** Device count:
 - \Rightarrow Human Brain: 10^{11} neurons (each neuron $\sim 10^4$ connections)
 - Silicon Chip: 10¹⁰ transistors with sparse connectivity
- **♦** Device speed:
 - ⇒ Biology has 100µs temporal resolution
 - Digital circuits are approaching a 100ps clock (10 GHz)
- ♦ Computing paradigm:
 - ⇒ Brain: Massively parallel computation & adaptive connectivity
 - Digital Computers: sequential information processing via CPUs with fixed connectivity
- **♦** Capabilities:
 - Digital computers excel in math & symbol processing...
 - ⇒ Brains: Better at solving ill-posed problems (speech, vision)

Conclusions and Summary

- Structure and organization of the brain suggests computational analogies

 - ❖ <u>Information transmission</u>: Electrical and chemical signaling
 - Primary computing elements: Neurons
 - Computational basis: Currently unknown (but getting closer)
- → We can understand neuronal computation by understanding the underlying primitives through:
 - Descriptive models
 - Mechanistic models
 - Interpretive models

R. Rao, 528 Lecture 1 61

Next Class

- **♦** Descriptive Models
 - **⋄** Neural Encoding
- **♦** Things to do:
 - ❖ Visit course website

http://www.cs.washington.edu/education/courses/528/

- ⇒ Matlab practice: Homework 0 and tutorials online
- Read Chapter 1 in Dayan & Abbott textbook