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CSE/NB 528 

Lecture 12: Unsupervised Learning 
(Chapters 8 & 10) 
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Today’s Agenda: Learning about Learning 

F Hebbian learning and its variants (Covariance, Oja rule) 
Relation to Principal Component Analysis (PCA) 

F Unsupervised Learning 
Generative Models 

(Copyright, Warner Brothers) 
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Flashback: Hebbian Learning  

F Linear neuron: 

 

F Basic Hebb Rule:  

 

F What is the average effect of this rule? 

 

 

F Q is the input correlation matrix: 
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Variants of Hebb’s Rule 

F Hebb: 

 
 

F Covariance rule: 

 

 

F Oja’s rule: 
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What does the Hebb rule do anyway? 

Eigenvector analysis of Hebb rule… 
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Hebb Rule implements Principal Component 

Analysis (PCA)! 

   Pure Hebb        Pure Hebb              Covariance Rule 
Input mean = (0,0)     Input mean = (2,2)        Input mean = (2,2) 

 

Hebb rule rotates weight vector to align with principal 

eigenvector of input correlation/covariance matrix (i.e. 

direction of maximum variance) 

Initial w 

Final w 
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What about this data? 

? 

What does the 

covariance rule learn? 

Initial w 
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PCA does not correctly describe the data 

Input data is made up of two clusters (Gaussians)  

  two “causes” 
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The Goal of Unsupervised Learning 
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F Goal: Learn a “Generative Model” 

for the data you are seeing 
Mimic the data generation process 

F General Approach: Given data u, 

solve two sub-problems: 
Estimate causes v (compute posterior) 

Learn parameters G 

(prior) 
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Example 1 

What is a possible generative 

model for this data? 
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Example 1: Mixture of Gaussians 

F Generative Model: Assume data 

was generated by a mixture of 

Gaussians 

F Goal: Learn means and variances 

of Gaussians as well as priors p[v] 

F Neural Implementation: Two 

neurons A and B that learn the 

means and variances from data 
Related to competitive learning, 

learning vector quantization (LVQ), 

self-organizing map (SOM), K-means, 

and EM algorithm in machine learning 

 

][]|[][ vpvpp
v

 uu

(v, v) 

u1 

u2 

Gaussian.a  is ]|[ Each vp u

12 R. Rao, 528: Lecture 12 

Example 2: Linear Generative Model 

Causes  v 

Data u 

Generative 

model 

Example: Suppose input u 

was generated by a linear 

superposition of causes v1, 

v2, …, vk with basis 

vectors (or “features”) gi 

 

 
(e.g., an image composed of 

several features, or audio 

containing several voices) 
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Example: “Eigenfaces” 

F Suppose your basis vectors or “features” gi  are the 

eigenvectors  of input covariance matrix (e.g., face images) 

u
1 g

2 g

15g
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Linear combination of eigenfaces 
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Linear Generative Model 

F Suppose input u was generated by linear superposition of 

causes v1, v2, …, vk and basis vectors or “features” gi: 

 

 

F Problem: For a set of inputs u, estimate causes vi for each u 

and learn feature vectors gi 
Suppose number of causes is much lesser than size of input 

F Idea: Find v and G that minimize reconstruction errors: 
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Probabilistic Interpretation 

F E is the same as the negative log likelihood of data: 

Likelihood = Gaussian with mean Gv and identity 

covariance matrix I 
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Minimizing error function E is the same as 

maximizing log likelihood of the data 
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Bayesian approach 

F Find v and G that maximize posterior: 

 

F Equivalently, find v and G that maximize: 

 ];[log];|[log),( GpGpGF vvuv 

Prior for causes (what should this be?) 
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What do we know about the causes v? 

F We would like the causes to be independent 
If cause A and cause B always occur together, then perhaps 

they should be treated as a single cause AB? 

F Examples:  
Image: Composed of several independent edges 

Sound: Composed of independent spectral components 

Objects: Composed of several independent parts 
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What do we know about the causes v? 

F We would like the causes to be independent 

F Idea 1: We would like: 

F Idea 2: If causes are independent, only a few of them will be 

active for any input 

va will be 0 most of the time but high for a few inputs 

Suggests a sparse distribution for the prior p[va;G] 
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Prior Distributions for Causes 
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Next Class: 

Predictive Coding 

Supervised Learning 

Reinforcement Learning 

To Do: 

Homework #3 

Group project 


