CSE/NB 528

Lecture 12: Unsupervised Learning
(Chapters 8 & 10)

Today’s Agenda: Learning about Learning

+ Hebbian learning and its variants (Covariance, Oja rule)
< Relation to Principal Component Analysis (PCA)

+ Unsupervised Learning
< Generative Models
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Flashback: Hebbian Learning

4+ Linear neuron: V= wu=u'w
, dw
+ Basic Hebb Rule: 7, P uv  (or w—w+eg-uv)

+ What is the average effect of this rule?

7, (L—\iv =(uv), = <uuTw>u = <uuT >UW =Qw

4+ Q is the input correlation matrix: Q = <uuT>

R. Rao, 528: Lecture 12 3
Variants of Hebb’s Rule
4+ Hebb:
dw
T,—— =Uuv Unstable
dt
4+ Covariance rule:
dw
Ty —— =Uu(v—(v)) Unstable
dt
4+ Oja’s rule:
dw ) 1
T —=UV—aV°W Stable |W|—> —
= ol
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What does the Hebb rule do anyway?

Eigenvector analysis of Hebb rule...
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Hebb Rule implements Principal Component

Analysis (PCA)!
Pure Hebb Pure Hebb Covariance Rule
Input mean = (0,0) Input mean = (2,2) Input mean = (2,2)

2, Up WH

Initiallw o * 7

Uy, Wy Uy,
Hebb rule rotates weight vector to align with principal
eigenvector of input correlation/covariance matrix (i.e.

direction of maximum variance)
R. Rao, 528: Lecture 12 6




What about this data?
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PCA does not correctly describe the data
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Input data is made up of two clusters (Gaussians)

- two “causes”
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The Goal of Unsupervised Learning

plvl Causes Vv
(prior)

Generative
model

\4

plu|v;G] Datau
(likelihood)
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plv|u;G]
(posterior)

4+ Goal: Learn a “Generative Model”

for the data you are seeing
<~ Mimic the data generation process

+ General Approach: Given data u,

solve two sub-problems:
< Estimate causes v (compute posterior)
< Learn parameters G

Example 1

plvli Causes v
(prior)

Generative
model

\4

plulv;G] Datau
(likelihood)
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What is a possible generative
model for this data?
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Example 1: Mixture of Gaussians

+ Generative Model: Assume data p[u] = Z p[u |v]p[v]
was generated by a mixture of v

Gaussians

4+ Goal: Learn means and variances
of Gaussians as well as priors p[v]

4+ Neural Implementation: Two

Each p[u|v]isa Gaussian.

| A@)_/ (4, o)

neurons A and B that learn the 0 «
means and variances from data B

< Related to competitive learning,

learning vector quantization (LVQ), U,
self-organizing map (SOM), K-means,
and EM algorithm in machine learning
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Example 2: Linear Generative Model

Causes v

Generative
model

Data u
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A

Example: Suppose input u
was generated by a linear
superposition of causes vy,
Vy, ..., Vi With basis
vectors (or “features”) g;

u= > gV, +noise
i

(e.g., an image composed of
several features, or audio
containing several voices)
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Example: “Eigenfaces”

+ Suppose your basis vectors or “features” g; are the
eigenvectors of input covariance matrix (e.g., face images)
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Linear combination of eigenfaces

gvi 9.V, T OsVs Image
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Linear Generative Model

+ Suppose input u was generated by linear superposition of
Causes Vy, Vs, ..., V, and basis vectors or “features” g;:

U= g,V +noise = Gv + noise
i

+ Problem: For a set of inputs u, estimate causes v; for each u
and learn feature vectors g;
< Suppose number of causes is much lesser than size of input

4+ ldea: Find v and G that minimize reconstruction errors:

U_Zgivi
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Probabilistic Interpretation

+ E is the same as the negative log likelihood of data:
Likelihood = Gaussian with mean Gv and identity
covariance matrix |

p[u|v;G]=N(u;Gv, 1)
E=-log p[u|v;G]:%(u—Gv)T(u—Gv)+C

Minimizing error function E is the same as
maximizing log likelihood of the data
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Bayesian approach

+ Find v and G that maximize posterior:
plv|u;G]ec plu|v;G]p[v;G]
+ Equivalently, find v and G that maximize:

F(v,G) =(log p[u|v;G]+log p[v;G])

Prior for causes (what should this be?)
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What do we know about the causes v?

+ We would like the causes to be independent
< If cause A and cause B always occur together, then perhaps
they should be treated as a single cause AB?

+ Examples:
< Image: Composed of several independent edges
< Sound: Composed of independent spectral components
< Objects: Composed of several independent parts
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What do we know about the causes v?

+ We would like the causes to be independent
+ ldea 1: We would like: p[v;G]=]] p[V,;GI

a
+ Idea 2: If causes are independent, only a few of them will be
active for any input

< v, will be 0 most of the time but high for a few inputs
< Suggests a sparse distribution for the prior p[v,;G]
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Prior Distributions for Causes

Spikes in area IT in Possible prior Log prior
monkey viewing TV distributions
A

g(v)=—|v|

exponential
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spike count v

plv;Glec [ Jexp(g(v,))
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Next Class:
Predictive Coding
Supervised Learning
Reinforcement Learning

To Do:
Homework #3

Group project
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