

Linear Generative Model

Suppose input u was generated by linear superposition of causes v₁, v₂, ..., v_k and basis vectors or "features" g_i:

$$\mathbf{u} = \sum_{i} \mathbf{g}_{i} v_{i} + noise = G\mathbf{v} + noise$$

Problem: For a set of inputs u, estimate causes v_i for each u and learn feature vectors g_i

 \Rightarrow Suppose number of causes is much lesser than size of input

• Idea: Find **v** and G that minimize reconstruction errors:

$$E = \frac{1}{2} \left\| \mathbf{u} - \sum_{i} \mathbf{g}_{i} v_{i} \right\|^{2} = \frac{1}{2} (\mathbf{u} - G\mathbf{v})^{T} (\mathbf{u} - G\mathbf{v})$$

R. Rao, 528: Lecture 12

15

Next Class: Predictive Coding Supervised Learning Reinforcement Learning

To Do:

Homework #3

Group project

R. Rao, 528: Lecture 12

21