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CSE/NB 528 

Lecture 13: From Unsupervised to 

Reinforcement Learning 
(Chapters 8-10) 
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Today’s Agenda: All about Learning 

F Unsupervised Learning 
Sparse Coding 

Predictive Coding 

F Supervised learning 
Perceptrons and Backpropagation 

F Reinforcement Learning  
TD and Actor-Critic learning 
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Recall from Last Time: Linear Generative Model 

Causes  v 

Data u 

Generative 

model 

Suppose input u was 

generated by a linear 

superposition of causes v1, 

v2, …, vk with basis 

vectors (or “features”) gi 

 

 nGnoisev
i

ii  vgu

(Assume noise is Gaussian 

white noise with mean zero) 
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Bayesian approach 

F Find v and G that maximize posterior: 

 

F Equivalently, find v and G that maximize log posterior: 
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Prior for individual causes (what 

should this be?) 
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What do we know about the causes v? 

F Idea: Causes independent: only a few of them will be active 

for any input 

va will be 0 most of the time but high for a few inputs 

Suggests a sparse distribution for p[va;G]: peak at 0 but 

with heavy tail (also called super-Gaussian distribution) 
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Examples of Prior Distributions for Causes 
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Finding the optimal v and G 

F Want to maximize: 

 

 

 

F Alternate between two steps:  
Maximize F with respect to v keeping G fixed 

How? 

Maximize F with respect to G, given the v above 

How? 
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Estimating the causes v for a given input 

)()( vvu
v

gGG
dt

d T 
Firing rate dynamics 

(Recurrent network) 

Error  Sparseness constraint 
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v
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d T 
Gradient 

ascent 

Reconstruction 

(prediction) of u 

Derivative of g 
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Sparse Coding Network for Estimating v 

)( vu G vG
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Prediction Error 

Corrected 

Estimate 

[Suggests a role for feedback pathways in the cortex (Rao & Ballard, 1999)] 
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Learning the Synaptic Weights G 
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Hebbian! 

(similar to Oja’s rule) 

Learning 

rule 

Prediction Error 
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Result: Learning G for Natural Images 

Each square is a column 

gi of G (obtained by 

collapsing rows of the 

square into a vector)  

vgu Gv
i

ii 

Any image patch u 

can be expressed as: 

Almost all the gi 

represent local edge 

features 

(Olshausen & Field, 1996) 
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Sparse Coding Network is a special case of 

Predictive Coding Networks 

(Rao, Vision Research, 1999) 
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Predictive Coding Model of Visual Cortex 

(Rao & Ballard, Nature Neurosci., 1999) 
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Predictive coding model explains contextual effects 

Monkey Primary Visual Cortex Model 

(Zipser et al., J. Neurosci., 1996) 

Increased activity for non-homogenous 

input interpreted as prediction error 

(i.e., anomalous input): center is not 

predicted by surrounding context. 
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Natural Images as a Source of Contextual Effects 

(Rao & Ballard, Nature Neurosci., 1999) 

Center 
predictable 

from 

Surround 
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What if your data comes with not just inputs but 

also outputs? 

Enter…Supervised Learning 
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Supervised Learning 

F Two Primary Tasks 

1. Classification 

Inputs u1, u2, … and discrete classes C1, C2, …, Ck 

Training examples: (u1, C2), (u2, C7), etc. 

Learn the mapping from an arbitrary input to its class 

Example: Inputs = images, output classes = face, not a face 
 

2. Regression 

Inputs u1, u2, … and continuous outputs v1, v2, … 

Training examples: (input, desired output) pairs 

Learn to map an arbitrary input to its corresponding output 

Example: Highway driving 

Input = road image, output = steering angle 
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The Classification Problem 

denotes output of +1 (faces) 

denotes output of -1 (other) 
Faces 

Other objects 

Idea: Find a separating hyperplane (line in this case) 
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Neurons as Classifiers: The “Perceptron” 

F Artificial neuron: 

m binary inputs (-1 or 1) and 1 output (-1 or 1) 

Synaptic weights wij 

Threshold i 

Inputs uj 

(-1 or +1) 
Output vi 

(-1 or +1) 

Weighted Sum Threshold 

(x) = +1 if x  0 and -1 if x < 0 

)( ij

j

iji uwv  
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What does a Perceptron compute? 

F Consider a single-layer perceptron 

Weighted sum forms a linear hyperplane (line, plane, …) 

 

 

 

Everything on one side of hyperplane is in class 1 (output = 

+1) and everything on other side is class 2 (output = -1) 

Any function that is linearly separable can be computed by 

a perceptron 
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Linear Separability 

F Example: AND function is linearly separable 

a AND b = 1 if and only if a = 1 and b = 1 

Linear hyperplane v 

u1 u2 

 = 1.5 
(1,1) 

1 

-1 

1 

-1 
u1 

u2 

Perceptron for AND 
 +1 output 

  -1 output 
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What about the XOR function? 

1 

-1 

1 

-1 
u1 

u2 
-1 -1 +1 

1 -1 -1 

-1 1 -1 

1 1 +1 

u1 u2 XOR 

Can a straight line separate the +1 outputs from 
the -1 outputs? 

?  +1 output 

  -1 output 
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Multilayer Perceptrons 

F Removes limitations of single-layer networks 
Can solve XOR 

F An example of a two-layer perceptron that computes XOR 

 

 

 

 

 

F Output is +1 if and only if x + y + 2(– x – y – 1.5) > – 1 

-1 

2 

 = -1 

 = 1.5 

-1 

1 1 

x y 

(Inputs x and y can be +1 or -1) 
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What if you want to approximate a 

continuous function (i.e., regression)? 

Can a network learn to drive? 
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Example Network 

Input u = [u1  u2 … u960]  = image pixels 

        Steering angle 

 Current image 

Desired Output: 

 d = [d1  d2 … d30] 
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Input nodes 
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Sigmoid output function: 

Sigmoid is a non-linear “squashing” function: Squashes input to 

be between 0 and 1. Parameter  controls the slope. 
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Sigmoid Networks 
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Multilayer Sigmoid Networks 

 

How do we learn these weights? 

Input u = (u1  u2 … uK)T  

Output v = (v1  v2 … vJ)
T;  Desired = d 
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Backpropagation Learning: Uppermost layer 

j

j

jjiii

ji

ji

jiji

xxWgvd
dW

dE

dW

dE
WW

)()( 

 

{delta rule} 

)( j

j

jii xWgv 

ku

jx

Learning rule for hidden-output weights W: 
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{gradient descent} 

Minimize output error: 
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Backpropagation: Inner layer (chain rule) 
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Learning rule for input-hidden weights w: 
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Minimize output error: 
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Demos: Pole Balancing and Backing up a Truck 

 (courtesy of Keith Grochow, CSE 599) 

• Neural network learns to balance a pole on a cart 

• System: 
• 4 state variables: xcart, vcart, θpole, vpole 

• 1 input: Force on cart 

• Backprop Network: 
• Input: State variables 

• Output: New force on cart 

• NN learns to back a truck into a loading dock 
• System (Nyugen and Widrow, 1989): 

• State variables: xcab, ycab, θcab 

• 1 input: new θsteering  

• Backprop Network: 
• Input: State variables 

• Output: Steering angle θsteering 

 

 

xcart 

vcart 

vpole 

θpole 

../CSE 473-06/NN demo.exe
../CSE 473-06/NN demo.exe
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Humans (and animals in general) don’t get exact 

supervisory signals (commands for muscles) for 

learning to talk, walk, ride a bicycle, play the piano, 

drive, etc. 
 

We learn by trial-and-error  

(with hints from others) 

Might get “rewards and punishments” along the way 

Enter…Reinforcement Learning 
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The Reinforcement Learning “Agent” 

Agent 

Environment 

State 

ut 

Reward 

rt 

Action 

at 
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Early Results: Pavlov and his Dog 

F Classical (Pavlovian) 

conditioning experiments  

F Training: Bell Food 

F After: Bell  Salivate 

F Conditioned stimulus 

(bell) predicts future 

reward (food) 
(http://employees.csbsju.edu/tcreed/pb/pdoganim.html) 
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Predicting Delayed Rewards 

F Reward is typically delivered at the end (when you know 

whether you succeeded or not) 

F Time: 0  t  T with stimulus u(t) and reward r(t) at each 

time step t  (Note: r(t) can be zero at some time points) 

F Key Idea: Make the output v(t) predict total expected future 

reward starting from time t 
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Learning to Predict Delayed Rewards 

F Use a set of modifiable weights w(t) and predict based on all 

past stimuli u(t): 

 

 

F Would like to find the weights (or filter) w() that minimize: 
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Yes, BUT…not yet available are the future rewards 

(Can we minimize this using 

gradient descent and delta rule?) 
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Temporal Difference (TD) Learning 

F Key Idea: Rewrite squared error to get rid of future terms: 

 

 

 

F Temporal Difference (TD) Learning: 

 2

2
1

0

2

0

)()1()(

)()1()()()(

tvtvtr

tvtrtrtvtr
tTtT




















 







 



)( )]()1()([ )()(   tutvtvtrww

Expected future reward Prediction 

 

Minimize this using 

gradient descent! 
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Predicting Delayed Reward: TD Learning 

Stimulus at t = 100 and reward at t = 200 

Prediction error  for each time step 

(over many trials) 
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Possible Reward Prediction Error Signal in the 

Primate Brain 

Dopaminergic cells in Ventral Tegmental Area (VTA) 

Before Training 

 

 

After Training 

Reward Prediction error? 

No error 
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More Evidence for Prediction Error Signals 

Dopaminergic cells in VTA 

Negative error 
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Reward predicted 

but not delivered 
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That’s great, but how does 

all that math help me get 

food in a maze? 
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Selecting Actions when Reward is Delayed 

States: A, B, or C 

 

Possible actions at 

any state: Left (L) or 

Right (R) 

 

If you randomly 

choose to go L or R 

(random “policy”), 

what is the expected 

value v of each state? 
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Policy Evaluation 

For random policy: 

 

 

 

 

 

 

 

Can learn value of locations 

using TD learning: 
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Let value of location 

v(u) = weight w(u) 

(Location, action)  new location 
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Maze Value Learning for Random Policy 

1.75 
2.5 

1 

Once I know the values, I can pick the action 

that leads to the higher valued state! 

(For all three, 

 = 0.5) 
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Selecting Actions based on Values 

2.5 1 

Values act as 

surrogate immediate 

rewards  Locally 

optimal choice leads 

to globally optimal 

policy (for “Markov” 

environments) 

Related to Dynamic 

Programming in CS 

(see appendix in text) 
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Actor-Critic Learning 

F Two separate components: Actor (maintains policy) and 
Critic (maintains value of each state) 

1.   Critic Learning (“Policy Evaluation”):  
Value of state u = v(u) = w(u) 
 

2.   Actor Learning (“Policy Improvement”): 

 

 

 

3.    Interleave 1 and 2 
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 Use this to select an action a 

at state u 

(same as TD rule) 

For all a’: 
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Actor-Critic Learning in the Maze Task 

Probability of going Left at a location 
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Demo of Reinforcement Learning in a Robot 
(from http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html ) 
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Things to do: 
 

Finish homework 3 

Work on group project 

Thanks, dopamine! 

../CSE528-05/reinf-demo/robodemo.html
../CSE528-05/reinf-demo/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html
http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html

