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CSE/NEUBEH 528 

Modeling Synapses and Networks 
(Chapter 7) 

 Image from Wikimedia Commons 

Lecture figures are from Dayan & Abbott’s book 
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Course Summary (thus far) 

F Neural Encoding 

What makes a neuron fire? (STA, covariance analysis) 

Poisson model of spiking 

F Neural Decoding 

Spike-train based decoding of stimulus 

Stimulus Discrimination based on firing rate 

Population decoding (Bayesian estimation) 

F Single Neuron Models 

RC circuit model of membrane 

Integrate-and-fire model 

Conductance-based Models 
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Today’s Agenda 

F Computation in Networks of Neurons 

Modeling synaptic inputs 

From spiking to firing-rate based networks 

Feedforward Networks 

Linear Recurrent Networks 
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SYNAPSES! 

Image Credit: Kennedy lab, Caltech. http://www.its.caltech.edu/~mbklab 
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What do synapses do? 

Increase or decrease postsynaptic membrane potential 

Spike 

Image Source: Wikimedia Commons 
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An Excitatory Synapse 

Input spike  
Neurotransmitter release 

(e.g., Glutamate)   
Binds to receptors   
Ion channels open  

positive ions (e.g. Na+) 
enter cell    

Depolarization due to 
EPSP (excitatory 

postsynaptic potential) 

Image Source: Wikimedia Commons 

Spike 
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An Inhibitory Synapse 

Input spike  
Neurotransmitter 

release (e.g., GABA) 
 Binds to receptors 
 Ion channels open 
 positive ions (e.g., 

K+) leave cell   
Hyperpolarization due 

to IPSP (inhibitory 
postsynaptic potential) 

Image Source: Wikimedia Commons 

Spike 
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Flashback         Membrane Model 
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Flashback!  The Integrate-and-Fire Model 
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Flashback!  Hodgkin-Huxley Model 
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How do we model the effects of a synapse on 

the membrane potential V ? 

Synapse ? 
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Probability of transmitter release given an input spike 

Probability of postsynaptic channel opening 

(= fraction of channels opened) 

Synaptic 

conductance 

Modeling Synaptic Inputs 

Synapse 
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Basic Synapse Model 

F Assume Prel = 1 

F Model the effect of a single spike input on Ps 

F Kinetic Model of postsynaptic channels:  
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What does Ps look like over time? 

Exponential function K(t) gives reasonable fit to biological data 

(other options: difference of exponentials, “alpha” function) 
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Linear Filter Model of Synaptic Input to a Neuron 
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Modeling Networks of Neurons 

F Option 1: Use spiking neurons  
Advantages: Model computation and learning based on: 

Spike Timing 

Spike Correlations/Synchrony between neurons 

Disadvantages: Computationally expensive 

F Option 2: Use neurons with firing-rate outputs (real 

valued outputs) 
Advantages: Greater efficiency, scales well to large networks 

Disadvantages: Ignores spike timing issues 

F Question: How are these two approaches related? 
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From Spiking to Firing Rate Models 
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Synaptic Current Dynamics in Firing Rate Model 

F Suppose synaptic kernel K is exponential: 

 

 Differentiating                                                   w.r.t. time t, 
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Output Firing-Rate Dynamics 

F How is the output firing rate v related to synaptic inputs? 

 

 

F Looks very much like membrane equation: 

 

 

F On-board derivations of special cases obtained from 

comparing the relative magnitudes of r and s … 

 (see also pages 234-236 in the text) 
 

))(( tIFv
dt

dv
sr 

meLm RIEV
dt

dV
 )(

uw  s
s

s I
dt

dI


20 R. Rao, 528: Lecture 9 

How good are Firing Rate Models? 

Firing rate model v(t) = F(I(t)) describes this well but not this case 

Input I(t) = I0 + I1cos(t) 
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Feedforward versus Recurrent Networks 
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For feedforward networks, matrix M = 0 

Output       Decay     Input     Feedback 
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Example: Linear Feedforward Network 
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Linear Feedforward Network 
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Linear Filtering for Edge Detection 
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Example of Edge Detection in a 2D Image 

http://www.alexandria.nu/ai/blog/entry.asp?E=51 
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Edge detectors in the visual system 

 

 

 

 

 

 

 

Examples of 

receptive 

fields in 

primary 

visual cortex 

(V1) 

V1 

(From Nicholls et al., 1992) 
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Filtering network is computing derivatives! 
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Feedforward Networks: Example 2 

Input: Area 7a Neurons with Gaze-Dependent Tuning Curves 

Output: Premotor Cortex Neuron with Body-Based Tuning Curves 

Coordinate Transformation 

(From Section 7.3 in Dayan & Abbott) 



29 R. Rao, 528: Lecture 9 

Output of Coordinate Transformation Network 

Same tuning curve 

regardless of gaze angle 

Premotor cortex neuron responds 

to stimulus location relative to 

body, not retinal image location 

Head fixed; 

gaze shifted to g1   g2   g3 

  

(See section 7.3 in Dayan & Abbott for details) 
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Linear Recurrent Networks 
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Next Class: Recurrent Networks 

F To Do: 

Homework 2 

Find a final project topic and partner(s) 


