
Lecture 1

Polynomial Time Hierarchy

April 1, 2008

Lecturer: Paul Beame

Notes:

1.1 Polynomial Time Hierarchy

We first define the classes in the polynomial-time hierarchy.

Definition 1.1 For each integer i, define the complexity class Σp
i to be the set of all languages L

such that there is a polynomial time Turing machine M and a polynomial q such that

x ∈ L⇔ ∃y1 ∈ {0, 1}q(|x|)∀y2 ∈ {0, 1}q(|x|) · · ·Qiyi ∈ {0, 1}q(|x|).M(x, y1, . . . , yi) = 1

where

Qi =

{

∀ if i is even

∃ if i is odd
,
and define the complexity class Πp

i to be the set of all languages L such that there is a polynomial
time Turing machine M and a polynomial q such that

x ∈ L⇔ ∀y1 ∈ {0, 1}q(|x|)∃y2 ∈ {0, 1}q(|x|) · · ·Qiyi ∈ {0, 1}q(|x|).M(x, y1, . . . , yi) = 1

where

Qi =

{

∃ if i is even

∀ if i is odd
.

(It is probably more consistent with notations for other complexity classes to use the notation ΣiP

and ΠiP for the classes Σp
i and Πp

i but the latter is more standard notation.)
The polynomial-time hierarchy is PH =

⋃

k Σp
k =

⋃

k Πp
k.

Observe that Σp
0 = Πp

0 = P, Σp
1 = NP and Πp

1 = coNP. Here are some natural problems in
higher complexity classes.

Exact-Clique = {〈G, k〉 | the largest clique in G has size k} ∈ Σp
2 ∩ Πp

2

since TM M can check one of its certificates is a k-clique in G and the other is not a k + 1-clique
in G.

MinCircuit = {〈C〉 | C is a circuit that is not equivalent to any smaller circuit} ∈ Πp
2

1



since
〈C〉 ∈ MinCircuit ⇔ ∀〈C ′〉∃y s.t. (size(C ′) ≥ size(C) ∨ C ′(y) 6= C(y)).

It is still open if MinCircuit is in Σp
2 or if it is Πp

2-complete However, Umans [1] has shown
that the analogous problem MinDNF is Πp

2-complete (under polynomial-time reductions).
Define

ΣiSAT = {〈ϕ〉 | ϕ is a Boolean formula s.t. ∃y1 ∈ {0, 1}n∀y2 ∈ {0, 1}n · · ·Qiyi ∈ {0, 1}nϕ(y1, . . . , yi) is true}.

and define ΠiSAT similarly. Theorem we can convert the Turing machine computation into a
Booleam formula and show that ΣiSAT is Σi-complete and ΠiSAT is Πi-complete.

It is generally conjectured that ∀i,PH 6= Σp
i .

Lemma 1.2 Πp
i ⊆ Σp

i implies that PH = Σp
i = Πp

i .

1.1.1 Alternative definition in terms of oracle TMs

Definition 1.3 An oracle TM M? is a Turing machine with a separate oracle input tape, oracle
query state qquery, and two oracle answer states, qyes and qno. The content of the oracle tape at
the time that qquery is entered is given as a query to the oracle. The cost for an oracle query is a
single time step. If answers to oracle queries are given by membership in a language A, then we
refer to the instantiated machine as MA.

Definition 1.4 Let PA = {L(MA) | M? is a polynomial-time oracle TM}, let NPA = {L(MA) |
M? is a polynomial-time oracle NTM}, and coNPA = {L | L ∈ NPA}.

Theorem 1.5 For i ≥ 0, Σp
i+1 = NPΠp

i (= NPΣp
i ).

Proof Σp
i+1 ⊆ NPΠp

i : The oracle NTM simply guesses y1 and asks (x, y1) for the Πp
i oracle for

∀y2 ∈ {0, 1}q(|x|) . . . Qi+1yi+1 ∈ {0, 1}q(|x|).M(x, y1, y2, . . . , yi+1) = 1.

NPΠp
i ⊆ Σp

i+1: Given a polynomial-time oracle NTM M? and a Πp
i language A then x ∈ L =

L(MA) if and only if there is an accepting path of MA on input x.
To describe this accepting path we need to include a string y consisting of

• the polynomial length sequence of nondeterministic moves of M?,

• the answers b1, . . . , bm to each of the oracle queries during the computation,

• the queries z1, . . . , zm given to A during the computation,

(Note that each of z1, . . . , zm is actually determined by a deterministic polynomial time computation
given the nondeterministic guesses and prior oracle answers so this can be checked at the end.)
However, we need to ensure that each oracle answer bi is actually the answer that the oracle A
would return on inputs zi.

If all the answers bi were yes answers then after an existential quantifier for y1 = y we could
simply check that (z1, . . . , zm) are the correct queries by checking that they are in Am which is in
Πp
i since A ∈ Πp

i .

2



The difficulty is that verifying the no answers is a Σp
i problem (which likely can’t be expressed

in Πp
i ). The trick to handle this is that since A ∈ Σp

i , there is some B ∈ Πp
i−1 ⊆ Πp

i and polynomial

p such that zj /∈ A iff ∃y′j ∈ {0, 1}p(|x|).(zj , y
′
j) ∈ B.

Therefore, to express L using a existentiallly quantified variable y1 that includes y as well as
all y′j such that the query answer bj is no. It follows that x ∈ L iff ∃y1, (x, y1) ∈ A′ for some Πp

i set
A′ and thus L ∈ Σp

i+1.

It follows also that Πp
i+1 = coNPΣp

i for i ≥ 0. This naturally also suggests the definition:

∆p
0 = P

∆p
i+1 = PΣp

i for i ≥ 0.

Observe that ∆p
i ⊆ Σp

i ∩ Πp
i and

∆p
1 = PP = P

Σp
1 = NPP = NP

Πp
1 = coNPP = coNP

∆p
2 = PNP = PSAT ⊇ coNP

Σp
2 = NPNP

Πp
2 = coNPNP.

Also, observe that in fact ExactClique is in ∆p
2 = PNP by querying Clique on 〈G, k〉 and

〈G, k + 1〉.

3



P

∩NP coNP

NP coNP

2
∆ P

2 2
Σ ∩ ΠP P

2
Σ P

2
Π P

3
∆ P

Figure 1.1: The First Levels of the Polynomial-Time Hierarchy

1.2 Non-uniform Complexity

1.2.1 Circuit Complexity

Let Bn = {f | f : {0, 1}n → {0, 1}}. A basis Ω is a subset of
⋃

n Bn.

Definition 1.6 A Boolean circuit over basis Ω is a finite directed acyclic graph C each of whose
nodes is either

1. a source node labelled by either an input variable in {x1, x2, . . .} or constant ∈ {0, 1}, or

2. a node of in-degree d > 0 called a gate, labelled by a function g ∈ Bd ∩ Ω.

There is a sequence of designated output gates (nodes). Typically there will just be one output
node. Circuits can also be defined as straight-line programs with a variable for each gate, by taking
a topological sort of the graph and having each line describes how the value of each variable depends
on its predecessors using the associated function.

Say that Circuit C is defined on {x1, x2, . . . , xn} if its input variables ⊆ {x1, x2, . . . , xn}. C
defined on {x1, x2, . . . , xn} computes a function in the obvious way, producing an output bit vector
(or just a single bit) in the order of the output gate sequence.

Typically the elements of Ω we use are symmetric. Unless otherwise specified Ω = {∧,∨,¬} ⊆
B1 ∪ B2.

Definition 1.7 A circuit family C is an infinite sequence of circuits {Cn}
∞
n=0 such that Cn is

defined on {x1, x2, . . . , xn}
size(Cn) = number of nodes in Cn.

4



depth(Cn) =length of the longest path from input to output.
A circuit family C has size S(n), depth d(n), iff for each n

size(Cn) ≤ S(n)

depth(Cn) ≤ d(n)

We say that A ∈ SIZEΩ(S(n)) if there exists a circuit family of size S(n) that computes A.
Similarly we define A ∈ DEPTHΩ(d(n)). When we have the De Morgan basis we drop the subscxript
Ω. Note that if another (complete) basis Ω is finite then it can only impact the size of circuits by
a constant factor since any gate with fan-in d can be simulated by a CNF formula of size d2d. We
write POLYSIZE =

⋃

k SIZE(nk + k).
There are undecidable problems in POLYSIZE. In particular

{1n | Turing machine Mn accepts 〈Mn〉} ∈ SIZE(1)

as is any unary language.
Next time we will prove the following theorem due to Karp and Liption:

Theorem 1.8 (Karp-Lipton) If NP ⊆ POLYSIZE then PH = Σp
2 ∩ Πp

2.

References

[1] C. Umans. The minimum equivalant dnf problem and shortest implicants. Journal of Computer
and System Sciences, 63(4):597–611, 2001.

5



Lecture 2

Relation of Polynomial-time Hierarchy,

Circuits, and Randomized Computation

April 3, 2008

Lecturer: Paul Beame

Notes:

2.1 Turing Machines with Advice

Last lecture introduced non-uniformity through circuits. An alternate view of non-uniformity is
Turing machines with an advice tape. The advice tape contains some extra information that
depends only on the length of the input; i.e., on input x the TM gets (x, α|x|).

Definition 2.1 TIME(t(n))/f(n) = {A | A is decided in time O(t(n)) by a TM with advice se-
quence {αn}n such that αn ∈ {0, 1}f(n)}. (Note that the we ignore constant factors in the running
time but not the advice.)

Now we can define the class of languages decidable in polynomial time with polynomial advice:

Definition 2.2 P/poly =
⋃

k,ℓTIME(nk)/nℓ

Lemma 2.3 P/poly = POLYSIZE.

Proof POLYSIZE ⊆ P/poly: Given a polynomial-size circuit family {Cn}n produce a P/poly TM
M by using advice strings αn = 〈Cn〉. On input x, M can then evaluate circuit C|x| on input x in
time polynomial in |x| and |〈C|x|〉| which is polynomial in |x|.

P/poly ⊆ POLYSIZE: Given a P/poly TM M with advice strings {αn}n, use the tableau con-
struction from the Cook-Levin Theorem to construct a polynomial size circuit family with the
advice strings hard-coded in the circuit.

If NP ⊆ P then PH = P but although P/poly contains undecidable languages we still get a
collapse of the polynomial-time hierarchy if NP ⊆ P/poly.

Theorem 2.4 (Karp-Lipton) If NP ⊆ P/poly then PH = Σp
2 ∩ Πp

2.

Proof Assume that NP ⊆ P/nO(1). It suffices to show that this implies that Πp
2 ⊆ Σp

2. In particular
we use the fact there any NP problem has a polynomial-time circuit to find a Σp

2 algorithm for the
Πp

2-complete problem Π2SAT . Recall that 〈ϕ〉 ∈ Π2SAT if and only if

∀u ∈ {0, 1}n∃v ∈ {0, 1}n ϕ(u, v).

6



Observe that {(〈ϕ〉, u) | ∃v ∈ {0, 1}n ϕ(u, v)} is an NP language. Therefore, by assumption, there
exists a circuit family {Cn}n of size q(n) for some polynomial q such that Cn(〈ϕ〉, u) = 1 if and
only if ∃v ∈ {0, 1}n ϕ(u, v). It would be then seem natural to define a Σp

2 algorithm to existentially
quantify over the bits of the encoding of 〈Cn〉 and then universally quantify over u. The difficulty is
that we don’t know that the bits sequence actually is for the correct circuit Cn that actually solve
the NP problem. However, by applying the standard polynomial self-reduction for NP problems
we can convert the circuit family {Cn}n to a circuit family {C ′

n}n that on input (〈ϕ〉, u) actually
produces a v′ ∈ {0, 1}n such that ϕ(u, v′) is true if one exists. (The circuit C ′

n will have to make
n calls to the circuit Cn successively fixing one bit of v′ at a time so its size will be at most nq(n)
and thus 〈C ′

n〉 will be at most n2q2(n) bits long.) Therefore the Σp
2 characterization of Π2SAT is

∃〈C ′
n〉∀u ∈ {0, 1}n, ϕ(u,C ′

n(〈ϕ〉, u)),

which is what we needed to show

2.2 Probabilistic Complexity Classes

A probabilistic (randomized) TM is an ordinary multi-tape TM with an extra one-way read-only
coin flip (random) tape. If the running time of M is T (n) then on input x, the coin flip tape is
initialized to a uniformly random string r ∈ {0, 1}f(|x|) where f(n) ≤ T (n). If r is the string of coin
flips for a machine M then we write T (n) then |r| ≤ T (n). Now we can write M(x, r) to denote
the output of M on input x with random tape r where M(x, r) = 1 if M accepts and M(x, r) = 0
if M rejects.

A probabilistic polynomial-time Turing Machine (PPT) is a probabilistic Turing Machine whose
worst-case running time T (n) is polynomial in n.

We can now define several probabilistic complexity classes. (The terminology, due to Gill who
introduced these classes, is not the most natural but it has stuck.)

Definition 2.5 Randomized Polynomial Time: L ∈ RP if and only if there exists a probabilistic
polynomial time TM M such that for some error ǫ < 1,

• ∀w ∈ L, Pr[M accepts w] ≥ 1 − ǫ, and

• ∀w /∈ L, Pr[M accepts w] = 0.

equivalently ∀w ∈ L, Prr[M(w, r) = 1] ≥ 1 − ǫ and ∀w /∈ L, Prr[M(w, r) = 1] = 0.

The error, ǫ, is fixed for all input sizes. RP is the class of problems with one-sided error (i.e.
an accept answer is always correct, whereas a reject may be incorrect.) coRP, which has one-sided
error in the other direction, is defined analogously. The following class encompasses machines with
two-sided error:

Definition 2.6 Bounded-error Probabilistic Polytime: L ∈ BPP if and only if there exists a
probabilistic polynomial time TM M such that for some ǫ < 1

2 ,

• ∀w ∈ L, Pr[M accepts w] ≥ 1 − ǫ and

7



• ∀w /∈ L, Pr[M accepts w] ≤ ǫ.

If we identify the language L with its characteristic function L(w) =

{

1 if w ∈ L

0 if w /∈ L
then we can

write this equivalently as L ∈ BPP iff for all w we have Prr[M(w, r) = L(w)] ≥ 1 − ǫ.

Clearly RP ⊆ NP, coRP ⊆ coNP. Also RP, coRP ⊆ BPP and BPP is closed under complement.
Randomized algorithms with 1-sided or 2-sided errors such as these are known as Monte Carlo
algorithms. Although we have so far required that the error in the definitions of BPP,RP, and coRP

be constant we can consider the more general case when the error ǫ = ǫ(n) is a function of the
input size.

Definition 2.7 Zero-error Probabilistic Polytime: ZPP = RP ∩ coRP.

Lemma 2.8 L ∈ ZPP if and only if there is a probabilistic TM M that always outputs the correct
answer (i.e, L(M) = L) and the expected runtime of M is polynomial.

Proof
⇒: Let M1 be an RP machine for L, and M2 be a coRP machine for L with errors ǫ1, ǫ2 < 1.
Define a probabilistic TN M that repeatedly runs M1 followed by M2 using independent random
strings until one accepts. If either accepts then the answer must be correct so if M1 accepts, then
accept and if M2 accepts then reject. Let ǫ = max(ǫ1, ǫ2). We expect to have to run at most 1

1−ǫ
trials before one accepts. Thus M decides L in polynomial expected time.

⇐: Let T (n) be the expected running time of a probabilistic TM M that always outputs the correct
answer for language L. By Markov’s inequality the probability that M runs for more than 3T (n)
steps is at most 1/3. To get an RP algorithm M ′ for L truncate the computation of M after 3T (n)
steps. If M has accepted then accept, otherwise reject. If w ∈ L then M ′ will accept w with
probability at least 2/3 and if w /∈ L then M will not accept w no matter what the random string.
The algorithm for coRP is completely dual.

Randomized algorithms that are always correct but may run forever are known as Las Vegas
algorithms. Our last probabilistic complexity class is much more powerful:

Definition 2.9 Probabilistic Polytime: L ∈ PP if and only if

Pr
r

[M(w, r) = L(w)] >
1

2
.

Here the error is allowed to be exponentially close to 1/2, which is the key difference from BPP.

Note that with PP, it might take exponentially many trials even to notice the probability
advantage.

8



2.2.1 Amplification

Lemma 2.10 For any probabilistic TM M with running time T (n) and two-sided error ǫ(n) =
1
2 − δ(n) there is a probabilistic TM M ′ with running time at most O( m

δ2(n)
T (n)) and error at most

2−m for the same language.

Proof M ′ simply runs M some number, k, times and takes the majority vote. The result follows
by simple Chernoff bounds. We give a detailed calculation below. The error is:

Pr
r

[M ′(x, r) 6= L(x)] = Pr[≥
k

2
wrong answers on x]

=

k/2
∑

i=0

Pr[
k

2
+ i wrong answers of M on x]

=

k/2
∑

i=0

(

k
k
2 + i

)

ǫ
k
2
+i(1 − ǫ)

k
2
+i

≤

k/2
∑

i=0

(

k
k
2 + i

)

ǫ
k
2 (1 − ǫ)

k
2

≤ 2kǫ
k
2 (1 − ǫ)

k
2

=
[

4(
1

2
− δ)(

1

2
+ δ)

]
k
2

= (1 − 4δ2)
k
2

≤ e−2δ2k since 1 − x ≤ e−x

≤ 2−m for k =
m

δ2

Note that amplification from sub-constant to constant error allows us to generalize the definition
of BPP to allow ǫ = ǫ(n) = 1/2 − δ(n) for δ(n) ≥ 1/q(n) for any polynomial q. However for PP,
this amplification does not yield an efficient algorithm since δ(n) may be 2−n.

A similar approach can be used with an RP language, this time accepting if any of the k trials
accept. This gives an error of ǫk, where we can choose k = m

log( 1
ǫ
)
.

2.3 Randomness and Non-uniformity

The following theorem show that randomness is no more powerful than advice in general.

Theorem 2.11 (Gill, Adleman) BPP ⊆ P/poly.

Proof Let L ∈ BPP. By the amplification lemma, there exists a BPP machine M for L and a
polynomial p such that:

∀x Pr
r∈{0,1}p(n)

[M(x, r) 6= L(x)] ≤ 2−n−1.

9



For r ∈ {0, 1}p(n) say that r is bad for x iff M(x, r) 6= L(x). By assumption, for all x ∈ {0, 1}n,

Pr
r

[r is bad for x] ≤ 2−n−1

We say that r is bad if there exists an x ∈ {0, 1}n such that r is bad for x.

Pr
r

[r is bad] ≤
∑

x∈{0,1}n

Pr
r

[r is bad for x]

≤ 2n2−n−1 ≤ 1/2 < 1.

Therefore for every n there must exist an rn ∈ {0, 1}p(n) such that rn is not bad. (In fact this is
true by construction for at least half the strings in {0, 1}p(n).) We can use this sequence {rn}n as
the advice sequence for a P/poly machine that decides L. Each advice string is a particular random
string rn that leads to a correct answer for every input of length n.

2.4 BPP and the Polynomial-time Hierarchy

We know that RP ⊆ NP. Here we see that generalizing to bounded 2-sided error still stays within
PH.

Theorem 2.12 (Sipser-Gacs, Lautemann) BPP ⊆ Σp
2 ∩ Πp

2

Proof Note that BPP is closed under complement, so it suffices to show BPP ⊆ Σp
2.

Let L ∈ BPP. Then by amplification, there is a probabilistic polytime TM M and polynomial p(n)
such that

Pr
r∈{0,1}p(n)

[M(x, r) 6= L(x)] ≤ 2−n.

Define AccM (x) = {r ∈ {0, 1}p(n) | M(x, r) = 1}. We have two cases: either AccM (x) is almost all
of {0, 1}p(n) and we should accept x or AccM (x) is only an exponentially small fraction of {0, 1}p(n)

and we should reject x. Moreover, we have a polynomial-time algorithm to determine membership
in AccM (x), namely on input r simply run M(x, r).

The general property we will prove is that for if a set S ⊆ {0, 1}m contains a large fraction of
{0, 1}m then a small number of translations of S will cover {0, 1}m but if S is a small fraction of
{0, 1}m then no small set of translations will suffice to cover the set. The translation we use is just
bit-wise exclusive or of bit vectors, ⊕. For S ⊆ {0, 1}m and t ∈ {0, 1}m, define S⊕t = {s⊕t|s ∈ S}.
Note that |S ⊕ t| = |S| and that b ∈ S ⊕ t if and only if t ∈ S ⊕ b.

Lemma 2.13 (Lautemann) Let S ⊆ {0, 1}m. If |S|
2m > 1

2 then there exists t1, . . . , tm ∈ {0, 1}m

such that,
m
⋃

j=1

(S ⊕ tj) = {0, 1}m.

10



Proof By the probabilistic method.
Let |S| > 2m−1 be a sufficiently large set as defined above. Choose t1, · · · , tm uniformly and
independently at random from {0, 1}m. Fix a string b ∈ {0, 1}m and j ∈ [m] = {1, . . . ,m}.

Pr[b ∈ S ⊕ tj] = Pr[tj ∈ S ⊕ b] = Pr[tj ∈ S] >
1

2
.

Therefore for any j ∈ [m], Pr[b /∈ S ⊕ tj ] < 1/2. The probability that b is not in any of the m
translations is then

Pr[b /∈
m
⋃

j=1

(S ⊕ tj)] =
m
∏

j=1

Pr[b /∈ S ⊕ tj ] < 2−m.

Therefore

Pr[∃b ∈ {0, 1}m s.t. b /∈
m
⋃

j=1

(S ⊕ tj)] < 2m2−m = 1.

Therefore there exists a set t1, . . . , tm such that the union of the translations of S by the tj covers
all strings in {0, 1}m.

Now apply Lautemann’s lemma with S = AccM (x) and m = p(n). If x /∈ L then AccM (x) is
only a 2−n fraction of {0, 1}m, and so m translations will only be able to cover at most an p(n)2−n

fraction of {0, 1}m, certainly not all of it. This gives us the following Σp
2 characterization of L:

x ∈ L⇔ ∃(t1, . . . , tp(|x|)) ∈ {0, 1}p
2(|x|)∀r ∈ {0, 1}p(|x|)(M(x, r⊕ t1) = 1∨ . . .∨M(x, r⊕ tp(|x|)) = 1).

11



Lecture 3

Circuit Size versus Uniform Complexity

April 8, 2008

Lecturer: Paul Beame

Notes:

The Karp-Lipton theorem gives a conditional result about the relationship between circuit
complexity (non-uniform complexity) and uniform complexity. What unconditional properties do
we know about circuit complexity and about its relationship to uniform complexity?

Let Bn = {f : {0, 1}n → {0, 1}}, that is, the set of all Boolean functions on n bits. Observe
that |Bn| = 22n

.

Theorem 3.1 (Shannon) “Most” Boolean functions f : {0, 1}n → {0, 1}, have circuit complexity
size(f) ≥ 2n

n − φ(n) where φ(n) is o(2n

n ). More precisely, for any ǫ > 0 and any basis Ω ⊆ B1 ∪ B2

there is a function φǫ : N → N such that at least a (1 − ǫ) fraction of functions f have sizeΩ(f) ≥
2n

n − φǫ(n).

Proof The proof is a by a counting argument. We will show that the number of circuits of size
much smaller than 2n

n is only a negligible fraction of |Bn|, proving the claim.
We first compute the number of circuits of with S ≥ n+2 gates over n inputs with Ω = {¬,∧,∨}.

What does it take to specify a given circuit? A gate labeled i in the circuit is defined by the labels
of its two inputs, j and k (j = k for unary gates), and the operation g the gate performs. The
input labels j and k can be any of the S gates or the n inputs or the two constants, 0 and 1. The
operation g can be any one of the three Boolean operations in the basis {¬,∧,∨}. Therefore there
are at most (S + n + 2)23 possibilities for each gate. The circuit description also needs to specify
the output gate, so any circuit with at most S gates can be specified by a description of length at
most (S + n+ 2)2S3SS (where we have added dummy gates if the circuit has fewer than S gates).

Note, however, that such descriptions compute the same function under each of the S! ways of
naming the gates. Since S! ≥ (S/e)S for any integer S, the number of different functions computed
by circuits of size S is at most

(S + n+ 2)2S3SS

S!
≤

(S + n+ 2)2S(3e)S

SS

≤
(2S)2S(3e)SS

SS
since S ≥ n+ 2

≤ (12eS)S+1

Observe that for general Ω ⊆ B1 ∪ B2, we can assume that |Ω| ≤ 16 since constant functions and
the unary identity function are not needed and we can replace 3 in the above calculation by 16.
Therefore the number of such circuits is at most (64eS)S+1. If (64eS)S+1 ≤ ǫ22n

then at least

12



an (1 − ǫ) fraction of functions in Bn have at size at least S. This holds if (S + 1) log2(64eS) ≤
2n− log2(1/ǫ). Now for S ≤ 2n/n, we have log2(64eS) ≤ n+8− log2 n and so (S+1) log2(64eS) ≤

(S + 1)(n + 8 − log2 n). Therefore if S + 1 ≤ 2n

n+8 then (S + 1) log2(64eS) ≤ 2n −
2n log2 n
n+8 ) ≤

2n − log2(1/ǫ) for n sufficiently large as a function of 1/ǫ. The claim follows by observing that
1

n+8 = 1
n − 8

n(n+8) which is 1
n − Θ( 1

n2 ).

Theorem 3.2 (Lupanov) Every Boolean function f : {0, 1}n → {0, 1} has size(f) ≤ 2n

n + ψ(n)
where ψ(n) is o(2n

n ).

Proof Proof of this part is left as an exercise. Note that a Boolean function f over n variables
can be easily computed in using its canonical DNF or CNF representation and so size(f) ≤ n2n+1.
Bringing it down close to 2n

n is a bit trickier. This gives a fairly tight bound on the size needed to
compute most Boolean functions over n variables.

As a corollary, we get a circuit size hierarchy theorem which is even stronger than the time and
space hierarchies we saw earlier; circuits can compute many more functions even when their size is
tripled.

Corollary 3.3 (Circuit-size Hierarchy). For any S, S′ : N → N, if n ≤ 3S(n) ≤ S′(n) < 2n/n,
then SIZE(S(n)) ( SIZE(S′(n)).

Proof Let m = m(n) < n be the largest integer such that S′(n) ≥ 2m/m + ψ(m) where ψ(m) is
defined as in Theorem 3.2 and is o(2m/m). Since 2m+1/(m + 1) + ψ(m + 1) > S′(n) ≥ 3S(n), we

have S(n) < 1
3 (2m+1

m+1 + ψ(m + 1)) = 2
3 ( 2m

m+1 + ψ(m+1)
2 ) = 2

3 (2m

m − 2m

m(m+1) + ψ(m+1)
2 ) < 2m

m − φ(m)

where φ(m) is defined as in Theorem 3.1 for ǫ = 1/2. Consider the set F of all Boolean functions
on n variables that depend only on the first m bits of their inputs. By Theorem 3.2, all functions
in F can be computed by circuits of size 2m/m + ψ(m) ≤ S′(n) and are therefore in SIZE(S′(n)).
On the other hand, at least 1/2 of the functions in F cannot be computed by circuits of size
2m/m− φ(m) > S(n) and are therefore not in SIZE(S(n)). (Note that with the weaker bound size
upper bound based on DNF formulas of m2m+1 for m-input functions, a similar argument would
yield a separation if S′(n) is ω(S(n) log2 S(n)).)

We now consider how these circuit size classes relate to uniform complexity classes. The Cook-
Levin Theorem shows how to simulate any algorithm running TIME(T (n)) on inputs of length n
by a circuit of size O(T 2(n)) with a constant number of circuit elements for each entry of the
T (n) × T (n) tableau for the time T (n) computation. The following Theorem, whose proof we just
sketch, shows that a more efficient simulation is possible.

Theorem 3.4 (Fischer-Pippenger) If T (n) ≥ n then TIME(T (n)) ⊆
⋃

c SIZE(cT (n) log2 T (n)).

Proof The basic idea of the proof is a variant on the Cook-Levin tableau construction. Observe
that the only calculations that take place in each row of this tableau involve the constant number
of circuit elements that surround the read/write head. The contents of other entries can just be
passed along directly to the next row. Unfortunately, in a typical Turing machine running on inputs

13



of size n the position of the read/write head at a fixed time step can vary based on the input string.
We say that a multitape Turing machine is oblivious if and only if the positions of its read/write
heads only depends on the time step but not on its actual input.

It turns out that Hennie and Stearns [1] showed that there is a simulation of multitape TMs
running in time O(T (n)) by 2-tape oblivious TMs running in time O(T (n) log T (n)). The circuit
we need to construct is just the tabeau circuit for this 2-tape TM. This circuit will have two rows
for each time step and only a constant number of circuit elements per row (after the first row).
The total number of gates will be O(T (N) log T (n)).

Theorem 3.5 (Kannan) For all k, Σp
2 ∩ Πp

2 6⊆ SIZE(nk).

Proof We know that SIZE(nk+1) 6⊆ SIZE(nk) by the circuit hierarchy theorem. To prove this
theorem we will give a specific example of a language with circuit size at least nk+1 that is in
Σp

2 ∩ Πp
2 \ SIZE(nk).

For each n, let Cn be the lexicographically smallest circuit on n inputs such that size(Cn) ≥ nk+1

and Cn is minimal; i.e., Cn is not equivalent to any smaller circuit. (For lexicographic ordering
on circuit encodings, we’ll use � and we assume that if size(C) ≤ size(C ′) then C � C ′.) Let
{Cn}

∞
n=0 be the corresponding circuit family and let A be the language decided by this family.

By our choice of Cn, A /∈ SIZE(nk). Also, by the circuit hierarchy theorem, size(Cn) is a
polynomial ≤ 3nk+1 and the size of the encoding |〈Cn〉| ≤ nk+3, say. Note that the factor of 3
is necessary because there may not be a circuit of size exactly nk+1 that computes A, but there
must be one of size not too much larger than this by the circuit hierarchy theorem. We first show
a weaker reswlt.

Claim: A ∈ Σp
4.

The basic idea of the claim is that we can express the conditions using quantifiers. We define A
by guessing the encoding 〈Cn〉 for inputs of length n as a string and then verifying that Cn satisfies:

• size(Cn) ≥ nk+1.

• Cn is minimal.

• For all minimal circuits D on n inputs of size at least nk+1 (and at most 3nk+1), Cn � D.

Recall from Lecture 1 that the property of a circuit being minimal is a Πp
2 property. That is, a

circuit C on n inputs (of size at most 3nk+1 say) is minimal if and only if

∀〈C ′〉 ∈ {0, 1}n
k+3

∃y ∈ {0, 1}n((size(C ′) ≥ size(C)) ∨ (C ′(y) 6= C(y))).

The third condition for a fixed D of size between nk+1 and 3nk+1 is equivalent to saying that D is
not minimal or Cn � D, i.e., . This is a Πp

2 condition in 〈D〉 and 〈Cn〉:

∃〈D′〉 ∈ {0, 1}n
k+3

∀z ∈ {0, 1}n [((size(D′) ≤ size(D)) ∧ (D′(z) = D(z))) ∨ (Cn � D)].

14



Now, we can use the same variable D to represent the candidate circuit in the third condition and
in place of the C ′ in the minimality condition for Cn. Therefore x ∈ A if and only if

∃〈C〉 ∈ {0, 1}|x|
k+3

∀〈D〉 ∈ {0, 1}|x|
k+3

∃〈D′〉 ∈ {0, 1}|x|
k+3

∃y ∈ {0, 1}|x| ∀z ∈ {0, 1}|x|

(C(x)

∧ (size(C) ≥ |x|k+1)

∧ ((size(D) ≥ size(C)) ∨ (D(y) 6= C(y)))

∧ [(size(D′) ≥ |x|k+1) ∧ [((size(D) ≤ size(D′)) ∧ (D(z) = D′(z))) ∨ (C � D)]).

The last three lines of the condition each match an item of the requirements and specifies that the
circuit C is precisely C|x|. The first line says that x ∈ A if and only if C|x|(x) is true. This proves
the claim and also the weaker conclusion that A ∈ PH.

We finish the proof of the theorem by analyzing two possible scenarios:

(a) NP ⊆ P/poly. In this case, by the Karp-Lipton Theorem, A ∈ PH = Σp
2 ∩ Πp

2 because the
polynomial time hierarchy collapses, and we are done.

(b) NP * P/poly. In this simpler case, there is some B ∈ NP−P/poly. In particular B /∈ SIZE(nk)
and since NP ⊆ Σp

2 ∩ Πp
2, we have B ∈ Σp

2 ∩ Πp
2 − SIZE(nk).

This finishes the proof of the Theorem.

Note that this argument is non-constructive: A is an explicit language not in SIZE(nk) and if
NP ⊆ P/poly then A is in Σp

2 ∩ Πp
2. In the second case we do not have an explicit language B and

we also don’t explicitly know which case is true. The latter problem would not be an issue: We
could define a new language A⊗B = {0x | x ∈ A}∪{1x | x ∈ B}, which is at least as hard as both
A and B. However, the former problem is much trickier to deal with but we can get an explcit Σp

2

(or Π2) language that is not in SIZE(nk).
The key to producing an explicit language in Σp

2 − SIZE(nk) is the fact that the proof of the
Karp-Lipton theorem is constructive. The construction for the Karp-Lipton theorem shows that
for any Πp

2 language L defined by an explicit formula ∀u ∈ {0, 1}q(|x|)∃v ∈ {0, 1}q(|x|)R(x, u, v) and
for any polynomial circuit size bound nk, there is another explicit formula

∃〈C ′〉 ∈ {0, 1}n
2k

∀u ∈ {0, 1}q(|x|)R(x, u,C ′(x, u))

such that if the language L′ defined by ∃v ∈ {0, 1}q(|x|)R(x, u, v) is in SIZE(nk) then the two
formulas define the same language. In general the new formula might not define the same language
so call this resulting Σp

2 language τ(L); this will equal L if L′ ∈ SIZE(nk). Similarly, by taking
complements, for L̄ ∈ Σp

2 there is an explicit τ(L̄) ∈ Πp
2 that is equal to L̄ if L′ ∈ SIZE(nk).

Now let L̄ be the Σp
2 language defined by removing the two initial quantifiers ∃〈C〉 ∈

{0, 1}|x|
k+3

∀〈D〉 ∈ {0, 1}|x|
k+3

from the definition of A. Then the Πp
2 language τ(L̄) is equal to

L̄ if L′ ∈ SIZE(nk) where L′ is the NP language related to L defined as above. Now define A′
0 by

x ∈ A′
0 if and only if ∃〈C〉 ∈ {0, 1}|x|

k+3
∀〈D〉 ∈ {0, 1}|x|

k+3
x ∈ τ(L̄). Clearly A′

0 is an explicit Σp
3

language and if L′ ∈ SIZE(nk) then A′
0 = A /∈ SIZE(nk). Let A′ = A′

0 ⊗ L′. Then A′ is in Σp
3 but

A′ /∈ SIZE(nk).
Repeating this construction again with A′ instead of A and removing only the initial ∃〈C〉 ∈

{0, 1}|x|
k+3

from the Σp
3 definition of A′ we can apply the analogous transformation to the resulting

Πp
2 language and convert A′ to a A′′ = A′′

0 ⊗ L′′ that is in Σp
2 but not in SIZE(nk).

15



References

[1] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing machines. Journal
of the ACM, 13(4):533–546, 1966.

16



Lecture 4

Complexity classes of functions, #P, and the

Permanent

April 10, 2008

Lecturer: Paul Beame

Notes:

We will now define some complexity classes of functions on input strings that output numerical
values of strings rather than decision problems where the output is a single bit.

Definition 4.1 The class FP is the set of all functions f : {0, 1}∗ → {0, 1}∗ (or alternatively,
f : {0, 1}∗ → N) that are computable by a TM with a separate output tape in polynomial time.
The class FNP is the analogous class for nondeterministic polynomial time where the requirement
for a nondeterministic TM to compute a function is that on a given input x the content of the
output tape is f(x) in all accepting computations.

Among the algorithmic problems representable by such functions are “counting problems” re-
lated to common decision problems. For example,

Definition 4.2 Let #3-SAT be the problem that takes as input the encoding 〈ϕ〉 of a 3-CNF
formula ϕ and outputs the number of satisfying assignments of ϕ.

More generally, given an NP language A defined by x ∈ A⇔ ∃y ∈ {0, 1}q(|x|)R(x, y) for a natural
polynomial-time computable predicate R associated with A, #A will be the function mapping x
to #{y ∈ {0, 1}q(|x|) | R(x, y)}. Note that this is not a precisely specified since there may be many
different choices of R that will work for the same language A. For many natural problems, however,
the right choice of the relation R will be obvious.

Definition 4.3 Given a complexity class C, we define the complexity class #C to be the set
of all functions f : {0, 1}∗ → N such that there is an R ∈ C and a polynomial q such that
f(x) = #{y ∈ {0, 1}q(|x|) | (x, y) ∈ R}.

In particular, #P is the set of all functions f : {0, 1}∗ → N such that there is an R ∈ P and a
polynomial q such that f(x) = #{y ∈ {0, 1}q(|x|) | (x, y) ∈ R}.

4.1 Function classes and oracles

Let us consider the use of oracle TMs in the context of function classes. For a language A, let FPA

be the set of functions f : {0, 1}∗ → {0, 1}∗ that can be computed in polynomial time by an oracle
TM M? that has A as an oracle.

17



Similarly, we can define oracle TMs M? that allow functions as oracles rather than sets. In this
case, rather than receiving the answer from the oracle by entering one of two states, the machine
can receive a binary encoded version of the oracle answer on an oracle answer tape. Thus for
functions f : {0, 1}∗ → {0, 1}∗ or f : {0, 1}∗ → N and a complexity class C for which it makes sense
to define oracle versions, we can define Cf . For a complexity class FC′ of functions we can define
CFC′

=
⋃

f∈FC′ Cf .
Note that although #P is a class of functions it is very closely related to the unbounded-error

class PP. In fact, their closure under polynomial-time Turing reductions is the same.

Theorem 4.4 PPP = P#P.

Proof There are two directions. One is easy. For L ∈ PPP there is some A ∈ PP such that L ∈ PA.
Furthermore there is some polynomial-time Turing machine M and polynomial p such that x ∈ A
if and only if #{r ∈ {0, 1}p(|x|) |M(x, r) = 1} > 2p(|x|) − 1. The P#P algorithm will simply replace
each call A to a call to the function f ∈ #P that computes #{r ∈ {0, 1}p(|x|) | M(x, r) = 1} and
then compares f(x) to 2p(|x|) − 1.

For the other direction, one has to use a polynomial number of calls to an appropriate PP oracle
to replace a call to the #P oracle f that on input x returns f(x) = #{y ∈ {0, 1}m | M(x, y) = 1}
where m = q(|X|) for some polynomial-time computable M . We can denote M ′ be the TM that on
input (z, y) where y, z ∈ {0, 1}m accepts if y ≺ z in the lexicographic order. Define M that on input
(x, z) flips m + 1 bits by where b ∈ {0, 1}. If b = 0 then run M(x, y). If b = 1 then run M ′(z, y).
The probability of acceptance of M ′′ is (Nz + f(x))/2m+1 where z is the binary representation of
integer Nz ∈ {0, . . . , 2m − 1}. If this is strictly larger than 1/2 then we know that f(x) > 2m−Nz.
We can query this language with m+ 1 different values of z to do a binary search for the value of
f(z).

Definition 4.5 A function f is #P-complete iff

1. f ∈ #P.

2. For all g ∈ #P we have g ∈ FPf .

As 3-SAT is NP-complete, #3-SAT is #P-complete:

Theorem 4.6 #3-SAT is #P-complete.

Proof The reduction produced by the Cook-Levin tableau is “parsimonious”, in that it preserves
the number of solutions. More precisely, in circuit form there is precisely one satisfying assignment
for the circuit for each NP witness y. Moreover, the conversion of the circuit to 3-SAT enforces
precisely one satisfying assignment for each of the extension variables associated with each gate.

Since the standard reductions are frequently parsimonious, they can be used to prove #P-
completeness of many counting problems relating to NP-complete problems. In some instances
they are not parsimonious but can be made parsimonious. For example we have the following.

18



Theorem 4.7 #HAM -CY CLE is #P-complete.

The set of #P-complete problems is not restricted to the counting versions of NP-complete
problems, however; interestingly, problems in P can have #P-complete counting problems as well.

Consider #CY CLE, the problem of finding the number of directed simple cycles in a graph G.
(The corresponding problem CY CLE is in P).

Theorem 4.8 #CY CLE is #P-complete.

Proof We reduce from #HAM -CY CLE. We will map the input graph G for #HAM -CY CLE
to a graph G′ for #CY CLE. Say G has n vertices. G′ will have a copy u′ of each vertex u ∈ V (G),
and for each edge (u, v) ∈ E(G) the gadget in Figure 4.1 will be added between u′ and v′ in G′.
This gadget consists of N = n ⌈log2 n⌉ + 1 layers of pairs of vertices, connected to u′ and v′ and
connected by 4N edges within. The number of paths from u′ to v′ in G′ is 2N ≥ 2nn. Each simple
cycle of length ℓ in G yields (2N )ℓ = 2Nℓ simple cycles in G′. If G has k Hamiltonian cycles, there
will be k2Nn corresponding simple cycles in G′. Now G has feweer than nn simple cycles of any
length, in particular of length ≤ n − 1. The total number of simple cycles in G′ corresponding to
these cycles of length ≤ n − 1 is < nn2N(n−1) = 2Nn−1 since nn ≤ 2N−1. Therefore we compute
#HAM -CY CLE(G) =

⌊

#CY CLE(G′)/2Nn
⌋

.

Figure 4.1: Edge replacement in #HAM -CY CLE to #CY CLE reduction.

The following corollary is left as an exercise:

Corollary 4.9 #2-SAT is #P-complete.

19



4.2 Determinant and Permanent

Some interesting problems in matrix algebra Given an n× n matrix A = (aij), the determinant of
A is

det(A) =
∑

σ∈Sn

(−1)sgn(σ)
n

∏

i=1

aiσ(i),

where Sn is the set of permutations of [n] = {1, . . . , n} and sgn(σ) is the is the number of transpo-
sitions required to produce σ modulo 2. This problem is in FP.

The (−1)sgn(σ) is apparently a complicating factor in the definition of det(A), but if we remove
it we will see that the problem actually becomes harder. This is called the permanent of matrix A:

perm(A) =
∑

σ∈Sn

n
∏

i=1

aiσ(i).

Let PERM be the problem of computing the permanent of a matrix. and 0-1PERM the
problem in the case that the matrix has binary entries. We can view the matrix A as the weighted
adjacency matrix of a bipartite graph on [n]× [n]. Each σ ∈ Sn corresponds to a perfect matching
in this graph. If we view the weight of a matching as the product of the weights of its edges the
permanent is the total weight of all matchings in the graph.

In particular a 0-1 matrix A corresponds to an unweighted bipartite graph G for which A
is the adjacency matrix, and perm(A) represents the number of perfect matchings on G. Let
#BIPARTITE-MATCHING be the problem of counting all such matchings. Therefore 0-
1PERM = #BIPARTITE-MATCHING ∈ #P.

Alternatively, an n × n matrix A can be viewed as a weighted adjacency matrix of a directed
graph G on n vertices (with possibly self-loops). Now each permutation σ ∈ Sn can be decomposed

into a union of disjoint cycles. For example, if σ =

(

1 2 3 4 5 6
3 4 5 2 1 6

)

∈ S6 then σ can also

be written in cycle form as (1 3 5)(2 4)(6) where the notation implies that each number in the
group maps to the next and the last maps to the first. These cycles cover all of the points [n]. For
a directed graph G, a cycle-cover of G is a union of simple cycles of G that contains each vertex
precisely once. In particular the edges corresponding to a term

∏n
i=1 aiσ(i) is the permanent of

A corresponds to the product of the weights of edges in the directed graph G corresponding to
the cycle-cover corresponding to σ, which we can view as the weight of the cycle-cover. Therefore
perm(A) is the total weight of all cycle-covers of G.

For a weighted, directed graph G, define PERM(G) as the total weight of all cycle-covers of
G, where the weight of a cycle-cover is the product of the weights of all its edges. Thus, for an
unweighted graph G, PERM(G) is the number of cycle-covers of G. The hardness of 0-1PERM
is established by showing that the problem of finding the number of cycle-covers of G is hard.

Theorem 4.10 (Valiant) 0-1PERM is #P-complete.

Proof We will reduce #3-SAT to 0-1PERM in two steps. Given any 3-SAT formula φ, in the
first step, we will create a weighted directed graph G′ (with small weights) such that

PERM(G′) = 43m#(ϕ)

20



where m is the number of clauses in ϕ. In second step, we will convert G′ to an unweighted graph
G such that PERM(G′) = PERM(G) mod M , where M will only have polynomially many bits.

First, we will construct G′ from φ. The construction will be via gadgets. The VARIABLE
gadget is shown in Figure 4.2. All the edges have unit weights. Notice that it contains one dotted
edge for every occurrence of the variable in φ. Each dotted edge will be replaced by a subgraph
which will be described later. Any cycle-cover either contains all dotted edges of positive occurrence
(and all self-loops of negative occurrence) or vice versa.

true

false

#arrows = 
#positive occurances

#arrows = 
#negative occurances

Figure 4.2: The VARIABLE gadget

The CLAUSE gadget is shown in Figure 4.2. It contains three dotted edges corresponding to
three variables that occur in that clause. All the edges have unit weights. This gadget has the
property that in any cycle-cover, at least one of the dotted edges is not used.

Figure 4.3: The CLAUSE gadget

21



Now, given any clause C and any variable x contained in it, there is a dotted edge (u, u′) in the
CLAUSE gadget for the variable and a dotted edge (v, v′) in the VARIABLE gadget for the clause.
These two dotted edges are replaced by an XOR gadget shown in Figure 4.2.

v’

u

a d

u’

v

c

3

2
−1

−1

b

−1

Figure 4.4: The CLAUSE gadget

The XOR gadget has the property that the total contribution of all cycle-covers using none or
both of (u, u′) and (v, v′) is 0. For cycle-covers using exactly one of the two, the gadget contributes
a factor of 4. To see this, lets consider all possibilities:

1. None of the external edges are present: The cycle-covers are [a c b d], [a b][c d], [a d b][c] and
[a d c b]. The net contribution is (-2) + 6+ (-1) + (-3) = 0.

2. (u, a) and (a, v′) are present: The cycle-covers are [b c d], [b d c], [c d][b] and [c][b d]. The
net contribution is (2) + (3)+ (-6) + (1) = 0.

3. (v, d) and (d, u′) are present: The cycle-covers are [a b][c] and [a c b]. The net contribution
is 1 + (-1) = 0.

4. All four external edges are present: The cycle-covers are [b c] and [b][c]. The net contribution
is 1 + (-1) = 0.

5. (v, d) and (a, v′) are present: The cycle-covers are [d b a][c] and [d c b a]. The net contribution
is 1 + 3 = 4.

6. (u, a) and (d, v′) are present: The cycle-covers are [a d][b c], [a d][b][c], [a b d][c], [a c d][b],
[a b c d] and [a c b d]. The net contribution is (-1) + 1 + 1 + 2 + 2 + (-1) = 4.

There are 3m XOR gadgets. As a result, every satisfying assignment of truth values to φ will
contribute 43m to the cycle-cover and every other assignment will contribute 0. Hence,

PERM(G′) = 43m#(φ)

Now, we will convert G′ to an unweighted graphG. Observe that PERM(G′) ≤ 43m2n ≤ 26m+n.
Let N = 6m + n and M = 2N + 1. Replace the weighted edges in G′ with a set of unweighted

22



edges as shown in Figure 4.2. For weights 2 and 3, the conversion does not affect the total weight
of cycle-covers. For weight -1, the conversion blows up the total weight by 2N ≡ −1(modM). As a
result, if G is the resulting unweighted graph, PERM(G′) = PERM(G) mod M .

−1

3

2

N blocks

Figure 4.5: The VARIABLE gadget

Thus, we have shown a reduction of #3-SAT to 0-1PERM. This proves the theorem.

23


