Lecture 3
Circuit Size versus Uniform Complexity

April 8, 2008
Lecturer: Paul Beame
Notes:

The Karp-Lipton theorem gives a conditional result about the relationship between circuit
complexity (non-uniform complexity) and uniform complexity. What unconditional properties do
we know about circuit complexity and about its relationship to uniform complexity?

Let B,, = {f : {0,1}" — {0,1}}, that is, the set of all Boolean functions on n bits. Observe
that |B,| = 2%".

Theorem 3.1 (Shannon) “Most” Boolean functions f : {0,1}"™ — {0, 1}, have circuit complexity
size(f) > £ — ¢(n) where ¢(n) is o(2-). More precisely, for any € > 0 and any basis Q C By UB,
there is a function ¢ : N — N such that at least a (1 — ¢) fraction of functions f have sizeq(f) >
% - e(n)

Proof The proof is a by a counting argument. We will show that the number of circuits of size
much smaller than % is only a negligible fraction of |B,|, proving the claim.

We first compute the number of circuits of with S > n+2 gates over n inputs with Q = {—, A, V}.
What does it take to specify a given circuit? A gate labeled 7 in the circuit is defined by the labels
of its two inputs, j and k (j = k for unary gates), and the operation g the gate performs. The
input labels j and k can be any of the S gates or the n inputs or the two constants, 0 and 1. The
operation g can be any one of the three Boolean operations in the basis {—, A, V}. Therefore there
are at most (S + n + 2)23 possibilities for each gate. The circuit description also needs to specify
the output gate, so any circuit with at most S gates can be specified by a description of length at
most (S + n + 2)293%8 (where we have added dummy gates if the circuit has fewer than S gates).

Note, however, that such descriptions compute the same function under each of the S! ways of
naming the gates. Since S! > (S/e)® for any integer S, the number of different functions computed
by circuits of size S is at most

(S +n+2)293%8 - (S +n+2)%%(3e)°
S| - Ss
(25)%5(3e)° S
< 7 ~ 7
< (12e8)5+1

since S >n+2

Observe that for general 2 C By U By, we can assume that [©2| < 16 since constant functions and
the unary identity function are not needed and we can replace 3 in the above calculation by 16.
Therefore the number of such circuits is at most (64eS)+1. If (64eS)°F! < 22" then at least



an (1 — €) fraction of functions in B,, have at size at least S. This holds if (S + 1)logy(64eS) <
2" —logy(1/€). Now for S < 2™/n, we have log,(64eS) < n+8 —logsn and so (S +1)logy(64eS) <

(S +1)(n + 8 —logyn). Therefore if S +1 < n27—:8 then (S + 1)logy(64eS) < 2" — 2720%) <

2" — logy(1/e€) for n sufficiently large as a function of 1/e. The claim follows by observing that
1 _ 1 8 | 1
m—ﬁ—mWthhISE—@(p) 0

Theorem 3.2 (Lupanov) Every Boolean function f : {0,1}" — {0,1} has size(f) < Z- + ¢(n)
where ¥ (n) is 0(%).

Proof Proof of this part is left as an exercise. Note that a Boolean function f over n variables
can be easily computed in using its canonical DNF or CNF representation and so size(f) < n2"*1.
Bringing it down close to % is a bit trickier. This gives a fairly tight bound on the size needed to
compute most Boolean functions over n variables.

As a corollary, we get a circuit size hierarchy theorem which is even stronger than the time and
space hierarchies we saw earlier; circuits can compute many more functions even when their size is
tripled.

Corollary 3.3 (Circuit-size Hierarchy). For any 5,5 : N — N, if n < 35(n) < S’(n) < 2"/n,
then SIZE(S(n)) € SIZE(S'(n)).

Proof Let m = m(n) < n be the largest integer such that S’(n) > 2™/m + ¢(m) where ¥(m) is
defined as in Theorem 3.2 and is 0(2™/m). Since 2™*!/(m + 1) + (m + 1) > S'(n) > 3S(n), we
have S(n) < 3(gr +v(m+ D) = §(Gagy + 257 = §G7 — g + 257 < 5 —o(m)
where ¢(m) is defined as in Theorem 3.1 for e = 1/2. Consider the set F' of all Boolean functions
on n variables that depend only on the first m bits of their inputs. By Theorem 3.2, all functions
in F' can be computed by circuits of size 2 /m + ¢ (m) < S’(n) and are therefore in SIZE(S’(n)).
On the other hand, at least 1/2 of the functions in F' cannot be computed by circuits of size
2" /m — ¢(m) > S(n) and are therefore not in SIZE(S(n)). (Note that with the weaker bound size
upper bound based on DNF formulas of m2™*! for m-input functions, a similar argument would
yield a separation if S’(n) is w(S(n)log? S(n)).) g

We now consider how these circuit size classes relate to uniform complexity classes. The Cook-
Levin Theorem shows how to simulate any algorithm running TIME(T'(n)) on inputs of length n
by a circuit of size O(T?(n)) with a constant number of circuit elements for each entry of the
T'(n) x T'(n) tableau for the time 7'(n) computation. The following Theorem, whose proof we just
sketch, shows that a more efficient simulation is possible.

Theorem 3.4 (Fischer-Pippenger) If T'(n) > n then TIME(T'(n)) C |, SIZE(cT'(n)log, T'(n)).

Proof The basic idea of the proof is a variant on the Cook-Levin tableau construction. Observe
that the only calculations that take place in each row of this tableau involve the constant number
of circuit elements that surround the read/write head. The contents of other entries can just be
passed along directly to the next row. Unfortunately, in a typical Turing machine running on inputs
of size n the position of the read/write head at a fixed time step can vary based on the input string.
We say that a multitape Turing machine is oblivious if and only if the positions of its read/write
heads only depends on the time step but not on its actual input.



It turns out that Hennie and Stearns [1] showed that there is a simulation of multitape TMs
running in time O(7T'(n)) by 2-tape oblivious TMs running in time O(T'(n)logT(n)). The circuit
we need to construct is just the tabeau circuit for this 2-tape TM. This circuit will have two rows
for each time step and only a constant number of circuit elements per row (after the first row).
The total number of gates will be O(T'(N)logT(n)).

Theorem 3.5 (Kannan) For all k, 5 N 1T Z SIZE(nF).

Proof We know that SIZE(n*+1) ¢ SIZE(n¥) by the circuit hierarchy theorem. To prove this
theorem we will give a specific example of a language with circuit size at least n**! that is in
¥b N 15\ SIZE(nk).

For each n, let C,, be the lexicographically smallest circuit on n inputs such that size(C),) > nktl
and C), is minimal; i.e., C), is not equivalent to any smaller circuit. (For lexicographic ordering
on circuit encodings, we’ll use < and we assume that if size(C) < size(C’) then C < C’.) Let
{Cn}22, be the corresponding circuit family and let A be the language decided by this family.

By our choice of C,, A ¢ SIZE(n*). Also, by the circuit hierarchy theorem, size(C,) is a
polynomial < 3n**! and the size of the encoding [(C,)| < n*+3 say. Note that the factor of 3
is necessary because there may not be a circuit of size exactly n**! that computes A4, but there
must be one of size not too much larger than this by the circuit hierarchy theorem. We first show
a weaker reswlt.

Cramm:  AeXi.

The basic idea of the claim is that we can express the conditions using quantifiers. We define A
by guessing the encoding (C),) for inputs of length n as a string and then verifying that C,, satisfies:

o size(Cp) > nFtl,
e (,, is minimal.
e For all minimal circuits D on n inputs of size at least n*+! (and at most 3n**!), C,, < D.

Recall from Lecture 1 that the property of a circuit being minimal is a IT5 property. That is, a
circuit C' on n inputs (of size at most 3n**! say) is minimal if and only if

W(C") € {0,133y € {0, 13" ((size(C") > size(C)) V (C'(y) # C(y)))-

The third condition for a fixed D of size between n**1 and 3n¥*! is equivalent to saying that D is
not minimal or C,, < D, i.e., . This is a IT§ condition in (D) and (C,,):

D) € {0,1}"°Vz € {0,1)" [((size(D') < size(D)) A (D'(2) = D(2))) V (C, < D)].

Now, we can use the same variable D to represent the candidate circuit in the third condition and
in place of the C’ in the minimality condition for C,,. Therefore z € A if and only if

3(C) € {0, 11" v(D) € {0, 1} 3D’y € {0, 111" 3y € {0, 1}1* vz € {0, 1}/

(size(D') > |z|"1) A [((size(D) < size(D')) A (D(z) = D'(2))) vV (C < D)]).



The last three lines of the condition each match an item of the requirements and specifies that the
circuit C' is precisely C|,. The first line says that x € A if and only if C|,/(z) is true. This proves
the claim and also the weaker conclusion that A € PH.

We finish the proof of the theorem by analyzing two possible scenarios:

(a) NP C P/poly. In this case, by the Karp-Lipton Theorem, A € PH = 8 NI} because the
polynomial time hierarchy collapses, and we are done.

(b) NP ¢ P/poly. In this simpler case, there is some B € NP—P/poly. In particular B ¢ SIZE(n*)
and since NP C ¥5 N 115, we have B € X5 N 115 — SIZE(nk).

This finishes the proof of the Theorem. [

Note that this argument is non-constructive: A is an explicit language not in SIZE(n*) and if
NP C P/poly then A is in ¥4 NII5. In the second case we do not have an explicit language B and
we also don’t explicitly know which case is true. The latter problem would not be an issue: We
could define a new language A® B = {0z | z € A} U{lz | z € B}, which is at least as hard as both
A and B. However, the former problem is much trickier to deal with but we can get an explcit 35
(or TI3) language that is not in SIZE(nF).

The key to producing an explicit language in 38 — SIZE(n*) is the fact that the proof of the
Karp-Lipton theorem is constructive. The construction for the Karp-Lipton theorem shows that
for any TI; language L defined by an explicit formula Vu € {0, 1}20*) 3y € {0,1}902D R(x, u, v) and
for any polynomial circuit size bound n¥, there is another explicit formula

3(C"y € {0,131 vu € {0,1}90%D R(z, u, C'(x, u))

such that if the language L' defined by 3v € {0,1}90*D R(z,u,v) is in SIZE(n*) then the two
formulas define the same language. In general the new formula might not define the same language
so call this resulting ¥ language 7(L); this will equal L if L' € SIZE(n*). Similarly, by taking
complements, for L € 32} there is an explicit 7(L) € IT5 that is equal to L if L' € SIZE(n¥).

Now let L be the ¥} language defined by removing the two initial quantifiers 3(C) €
{0, 1} v(D) € {0,1}*""* from the definition of A. Then the 15 language 7(L) is equal to
L if L' € SIZE(n*) where L' is the NP language related to L defined as above. Now define Aj by
z € A if and only if 3(C) € {0, 1} v(D) e {0,1}1*I"" 2 € 7(L). Clearly A} is an explicit 4
language and if L’ € SIZE(n*) then A = A ¢ SIZE(n*). Let A’ = A} ® L'. Then A’ is in ¥} but
A’ ¢ SIZE(nF).

Repeating this construction again with A’ instead of A and removing only the initial 3(C) €
{0, 1}'75‘1€+3 from the X% definition of A" we can apply the analogous transformation to the resulting
115 language and convert A’ to a A” = A} ® L” that is in X5 but not in SIZE(nF).

References

[1] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing machines. Journal
of the ACM, 13(4):533-546, 1966.



