
Lecture 7

Toda’s Theorem

April 20, 2004
Lecturer: Paul Beame

Notes: Tian Sang

Definition 7.1. If P is any predicate define

⊕ky. P (y) = |{y ∈ {0, 1}k : P (y)}| mod 2,

#ky.P (y) = |{y ∈ {0, 1}k : P (y)}| =
∑

y∈{0,1}k

P (y),

R
ky. P (y) =

|{y ∈ {0, 1}k : P (y)}|

2k

Definition 7.2. For complexity class C, define

L ∈ ⊕ · C ⇔ there is a relation R ∈ C and polynomial p such that

L = {x | ⊕p(|x|) y. R(x, y)}

L ∈ BP · C ⇔ there is a relation R ∈ C and polynomial p such that for some ε < 1/2
{

R
p(|x|)y. R(x, y) ≥ 1 − ε for x ∈ L

R
p(|x|)y. R(x, y) ≤ ε for x /∈ L

L ∈ R · C ⇔ there is a relation R ∈ C and polynomial p such that for some ε < 1
{

R
p(|x|)y. R(x, y) ≥ 1 − ε for x ∈ L

R
p(|x|)y. R(x, y) = 0 for x /∈ L

L ∈ P · C ⇔ there is a relation R ∈ C and polynomial p such that

L = {x | R
p(|x|)y. R(x, y) > 1/2}

Theorem 7.1 (Toda). PH ⊆ P#P = PPERM.

As outlined in the last lecture this is done in two steps.

Lemma 7.2 (Toda). PH ⊆ BP · ⊕P.

Lemma 7.3 (Toda). BP · ⊕P ⊆ P · ⊕P ⊆ P#P.

As a warm-up we finish the proof of the following lemma which provides the key ideas for the proof of
Lemma 7.2.

Theorem 7.4 (Valiant-Vazirani, Toda). NP ⊆ R. ⊕ P ⊆ RP
⊕P.

34

LECTURE 7. TODA’S THEOREM 35

Proof. To prove Theorem 7.4, as outlined in the last lecture we convert an NP problem to equivalent problem
for which there is precisely one solution (and therefore the number of solutions will be odd). This will
be accomplished by adding randomly chosen linear constraints. We use the following slightly weakened
version of a lemma due to Valiant and Vazirani.

Lemma 7.5 (Valiant-Vazirani). If ∅ 6= S ⊆ F
n
2 , then for v1, · · · vn+1 ∈R F

n
2 ,

Pr[∃i ∈ {1, · · · n}. |S ∩ 〈v1, v2, . . . , vi+1〉
⊥| = 1] >

1

8
.

This follows immediately from the following lemma.

Lemma 7.6. Fix a set S ⊆ F
n
2 , then for v1, . . . , vn+1 ∈R F

n
2 ,

(a) if 0n ∈ S, then Pr[|S ∩ 〈v1, v2, . . . , vn+1〉
⊥| = 1] > 1

2

(b) if 0n /∈ S, and 2i−1 ≤ |S| ≤ 2i then Pr[|S ∩ 〈v1, v2, . . . , vi+1〉
⊥| = 1] > 1

8

Proof. We first show part (a). Since we always have 0n ∈ 〈v1, v2, . . . , vi+1〉
⊥, if 0n ∈ S then 0n ∈ S∩ <

v1, v2, . . . , vi >⊥. For any x ∈ F
n
2 , if x 6= 0n we have for any j that Pr[vj · x = 0] = 1/2. Therefore,

since the vj are chosen independently, Pr[v1 · x = v2 · x = . . . = vn+1 · x = 0] = 1
2n+1 . Thus

Pr[∃x ∈ S − {0n}, x ∈ 〈v1, v2, . . . , vn+1〉
⊥] ≤

∑

x∈S−{0n}

Pr[x ∈ 〈v1, v2, . . . , vn+1〉
⊥]

=
|S| − 1

2n+1
< 1/2.

It follows that with probability greater than 1/2, 0n is the only element of S ∩ 〈v1, v2, . . . , vn+1〈
⊥ which

means that Pr[|S ∩ 〈v1, v2, . . . , vn+1〉
⊥| = 1] > 1/2.

We now prove part (b). Suppose that 0n /∈ S and 2−1 ≤ |S| ≤ 2i. Define h(x) = (v1 ·x, · · · , vi+1 ·x) ∈
F

i+1
2 . As in the argument for part (a), for x 6= 0n, Pr[h(x) = 0i+1] = 1/2i+1. An alternative way of

viewing this probability statement is to view the condition that h(x) = 0 as a system of linear equations
whose variables are the coordinates of the vj vectors and whose coefficients are given by the coordinates of
x. For x 6= 0, each equation vj · x = x · vj = 0 adds an additional independent constraint and therefore the
dimension of the solution space drops by 1 for each j. In total, there are i+1 linearly independent equations
in the vj so the solution space is a 2−(i+1) fraction of all possible vectors.

Suppose now that x 6= y and x, y 6= 0n, Then the condition that h(x) = h(y) = 0i+1 is given by 2(i+1)
equations whose coefficients are given by the coordinates of x and y. Since x /∈ {0n, y} and y 6= 0n, x and
y are linearly independent and thus all of the 2(i + 1) equations given by h(x) = h(y) = 0i+1 are linearly
independent. Therefore Pr[h(x) = h(y) = 0i+1] = 1/22(i+1) for x, y ∈ S, x 6= y. Thus

Pr[∃y ∈ S − {x}. h(x) = h(y) = 0i+1] ≤
∑

y∈S−{x}

Pr[h(x) = h(y) = 0i+1]

=
|S| − 1

22(i+1)

<
1

2i+2
since |S| ≤ 2i.

LECTURE 7. TODA’S THEOREM 36

Therefore

Pr[h(x) = 0i+1 and ∀y ∈ S − {x}. h(y) 6= 0i+1]

= Pr[h(x) = 0i+1] − Pr[∃y ∈ S − {x}. h(x) = h(y) = 0i+1]

>
1

2i+1
−

1

2i+2
=

1

2i+2
.

Taking the union of these events, which are disjoint, over all choices of x ∈ S,

Pr[∃x. h(x) = 0i+1 and ∀y ∈ S − {x}. h(y) 6= 0i+1] >
|S|

2i+2

≥
2i−1

2i+2
=

1

8
since |S| ≥ 2i−1

as required.

We now prove Theorem 7.4 that NP ⊆ R · ⊕P. The key difference between showing this and showing
that NP ∈ RP

⊕P is the requirement that the algorithm make only one query to the ⊕P oracle and return the
answer as its output. In order to do this we begin with a different basic experiment from the one outlined at
the end of last lecture. Instead of trying all possible values of i we choose i at random. With probability at
least 1/n this choice of i will be the correct i for Lemma 7.5. Here is the basic experiment E on input ϕ:

1. choose i ∈R {1, . . . , n}, and v1, . . . , vi+1 ∈R F
n
2

2. query the ⊕SAT oracle on ϕ∧ϕv1
∧· · ·∧ϕvi+1

where ϕv is a formula that is satisfied by x iff v ·x = 0.

3. accept iff the oracle accepts.

Observe that if ϕ has n variables then

• if ϕ is unsatisfiable then Pr[E accepts ϕ] = 0, and

• if ϕ is satisfiable then Pr[E accepts ϕ] > 1
8n

.

This yields a randomized algorithm (with one call to an ⊕P oracle) for SAT with 1-sided error but its
success probability is too low. To boost its success probability we make m independent trials of E. Each
trial chooses an integer i in {1, . . . ,m} and sequence of i + 1 vectors.

Let r1 = (i1, v
1
1 , . . . , v

1
i1

) through rm = (i1, v
m
1 , . . . , vm

im
) be the sequence of random choices of the

independent trials of experiment E. Therefore

Pr[all m experiments fail] ≤ (1 −
1

8n
)m ≤ e−

m
8n ≤ e−2n for m = 16n2.

Thus
ϕ ∈ SAT ⇔ Rr1, . . . , rm ∃j ∈ [16n2]. ϕrj

∈ ⊕SAT
︸ ︷︷ ︸

≥ 1 − e−2n

where ϕrj
is the variant of ϕ created by added the linear constraints given by random string rj . In compari-

son with trying all values of i, this does not seem to have helped much (except to reduce the error) because
there are now 16n2 calls to the ⊕P oracle. We will concentrate on modifying the part of formula marked
with the underbrace so that only one such call is required.

LECTURE 7. TODA’S THEOREM 37

V

…⊕ ⊕

⊕⊕

j [16n2]∈

…
y

poly time R(x,y,i,r)

…

¬
∧

¬¬ …

…

…
poly time R(x,y,i,r)

… To remove not gate,

replace R with R’

Figure 7.1: Converting from OR (∃) to AND (∀

We now express things more generally using the definition of ⊕P. We have shown that for any NP

language L, there is a polynomial-time computable relation R and a polynomial bound p such that

x ∈ L ⇔ Rr ∃j ∈ [16N 2] ⊕N y.R(x, y, j, r)
︸ ︷︷ ︸

≥ 1 − e−2N

where N = p(|x|) and r = (r1, . . . , r16N2). Now

∃j ∈ [16N 2] ⊕N y. R(x, y, j, r) = ¬∀j ∈ [16N 2]¬ ⊕N y. R(x, y, j, r)

= ¬∀j ∈ [16N 2] ⊕N+1 y. R(x, y, j, r)

where (R) is defined as in the following lemma.

Lemma 7.7. If A ∈ ⊕P then A ∈ ⊕P.

Proof. We simply add an additional 1 input to the parity quantifier to negate its value. More precisely, if
x ∈ A ⇔ ⊕Ny. R(x, y) for polynomial-time computable R then x ∈ A ⇔ ⊕N+1y′. R(x, y′) where
R(x, y′) = ((y′ = 0N+1) ∨ ((y′ = 1y) ∧ R(x, y))).

Since an ∃ quantifier acts as an OR and a ∀ acts as an AND we can view this as in Figure 7.1.

Since its inputs are 0-1-valued, the ∀ (or AND) acts simply as a fan-in 16N 2 multiplication of large
fan-in sums modulo 2. Expanding out this product of sums as a sum of products yields

¬∀j ∈ [16N 2] ⊕N+1 y. R(x, y, j, r) = ¬⊕16N2(N+1) y1, . . . , y16N2

16N2

∧

j=1

R(x, yj , j, r)

= ¬⊕16N2(N+1) yR′(x, y, j, r) for some polytime R′

= ⊕16N2(N+1)+1yR′(x, y, j, r) incorporating the negation.

This is only a single call to a ⊕P oracle. Plugging this in for the quantity in the underbrace yields the desired
R · ⊕P algorithm.

This argument has yielded almost all the ideas we will need for proving Lemma 7.2.

Proof of Lemma 7.2. Suppose L ∈ PH, then there is some k such that L ∈ ΣkP. Therefore there is some
relation R and polynomial p such that

L = {x | ∃p(|x|)y1∀
p(|x|)y2∃ . . . Qp(|x|)yk. R(x, y1, . . . , yk)}

= {x | ∃p(|x|)y1¬∃
p(|x|)y2¬∃¬ . . . Qp(|x|)yk. R(x, y1, . . . , yk)}.

LECTURE 7. TODA’S THEOREM 38

Consider expanding the tree of quantifiers as a giant tree of possible values. For each of the 2jp(|x|) values
of the prefix y1, . . . , yj for 0 ≤ j ≤ k−1 there is an ∃ node in the tree. The total number of such nodes over
all values of j ≤ k − 1 is less than 2kp(|x|). Let N = kp(|x|). Choose 16N 2 tuples rj = (ij , v

j
1, . . . , v

j
ij+1)

where ij ∈ [N] and vj
i ∈ F

N
2 as in the proof of Theorem 7.4. Apply the argument of Theorem 7.4 (before the

conversion to a single ⊕P call) simultaneously to all the predicates corresponding to the all ∃ nodes, using
the same sequence of random choices. (This involves adding the same set of linear constraints to augment
each of the ∃ nodes in this tree.) For a fixed input x and a fixed node, the probability that the value at that
node is incorrectly computeed is at most e−2N . There are fewer than 2N nodes in the tree and only 2n inputs
x of length n. Therefore the probability that there is some node of the tree that is computed incorrectly is at
most 2n · 2N · e−2N < 1

4 .

So we have an computation for x ∈ L described as

R
−→r ∃j1 ∈ [16N2] ⊕N y1 · · · ∃jk ∈ [16N2] ⊕N yk. R(x,−→r , j1, . . . , jk, y1, . . . , yk)

for some polynomial-time computable relation R that gives the correct value all but at most 1/4 of the time
(over the random choices r). This is a bounded-error algorithm for L. (Note that because of the negations
in the tree, the error is 2-sided and no longer 1-sided as in the case of NP.)

Again we multiply out the small fan-in ∃ quantifiers to yield to rewrite this expression as:

R
−→r ⊕(16N2)kN (y1

1 . . . y1
k) . . . (y16N2

1 , . . . , y16N2

k)
∧

j1...jk∈[16N2]k

R(x,−→r , j1, . . . , jk, y
j1
1 , . . . , yjk

k).

Since k is constant, this vector of y values has polynomial size and the interior computation is polynomial
time, and thus L ∈ BP · ⊕P.

Proof of Lemma 7.3. We show that BP · ⊕P ⊆ P#P. Suppose that L ∈ BP · ⊕P. (It will be easy to see that
the result also holds for the unbounded-error complexity class P · ⊕P.) Then there is some polynomial-time
TM M and polynomial function N = p(|x|), such that

L = {x | R
Nr ⊕N y. M(x, r, y) > 1/2}

= {x |
∑

r∈{0,1}N

B(x, r) > 2N−1},

where B(x, r) =
∑

y∈{0,1}N M(x, r, y) mod 2

Here is the basic proof idea: Suppose we could create a polynomial time TM M ′ such that

∑

y′∈{0,1}N′

M ′(x, y′, r) ≡ B(x, r) (mod 2N+1).

Then we would have
∑

r∈{0,1}N B(x, r) ≡
∑

r∈{0,1}N

∑

y′∈{0,1}N′ M ′(x, y′r) (mod 2N+1).

Then to tell whether or not x ∈ L, we can simply compute #N+N ′

(r, y′). M ′(x, y′, r) using the #P

oracle, take that value mod 2N+1, and accept if the result is > 2N−1.

We will not quite be able to do this but we will be able to find an M ′ such that

∑

y′∈{0,1}N′

M ′(x, y′, r) ≡ −B(x, r) (mod 2N+1).

LECTURE 7. TODA’S THEOREM 39

By a similar argument we can decide L by making a call to compute #N+N ′

(r, y′). M ′(x, y′, r) using the
#P oracle, taking that value mod 2N+1, and accepting if the result is < 2N+1 − 2N−1.

In order to satisfy these conditions we need to convert the number of accepting computations from being
either 0 or −1 modulo 2 into a number that is either 0 or −1 modulo 2N+1. The key technical lemma is the
following:

Lemma 7.8. For integers a and m > 0,

(a) if a ≡ 0 (mod m) then 4a3 + 3a4 ≡ 0 (mod m2), and

(b) if a ≡ −1 (mod m) then 4a3 + 3a4 ≡ −1 (mod m2).

Proof. Part (a) follows because m2|a2 and a2|4a3 + 3a4.

For part (b) write a = km − 1. Then

4a3 + 3a4 = 4(km − 1)3 + 3(km − 1)4

≡ 12km − 4 + (−12km + 3) (mod m2)

≡ −1 (mod m2).

We apply this lemma inductively to construct polynomial-time machines Mi(x, y, r) such that
∑

y Mi(x, y, r) ≡ −B(x, r) (mod 22i

). Applying the construction until i = dlog2(N + 1)e will yield
the desired M ′. For the base case i = 0, choosing M0(x, y, r) = M(x, y, r) we have

∑

y M0(x, y, r) ≡
−B(x, r) (mod 2) as required. For the inductive step, suppose that we have already constructed M i. We
will apply Lemma 7.8 with m = 22i

and note that m2 = 22i+1

. We create a new machine Mi+1 so that on
input (x, r) if a is the number of accepting choices for y in Mi then Mi+1 will have 4a3 + 3a4 accepting
choices of its corresponding y′.

Let y′ = (z1, z2, z3, y1, y2, y3, y4), such that zi ∈ {0, 1}, and yi ∈ {0, 1}|y|. Define

Mi+1(x, r, y′) = (z1 ∧ Mi(x, r, y1) ∧ Mi(x, r, y2) ∧ Mi(x, r, y3) ∧ (y4 = 0|y|))

∨((z1 ∧ (z2 ∨ z3)) ∧ Mi(x, r, y1) ∧ Mi(x, r, y2) ∧ Mi(x, r, y3) ∧ Mi(x, r, y4)).

It is easy to see the Mi+1 has the desired number of accepting choices of y ′ as a function of the number of
choices of y for Mi. By Lemma 7.8, we know that

∑

y′ Mi+1(x, y′, r) ≡ −B(x, r) (mod 22i+1

).

It remains to confirm the final machine M ′ is polynomial-time computable. It clearly will be polynomial
in the length of the final string y′. Since the number of times to repeat this construction is i = dlog2(N +1)e,
and at each iteration |y′| = 3 + 4|y|, |y′| grows by factor ≤ 7 per iteration. Therefore the total length of y ′

at the end is ≤ 7log2(N+1)N , which is polynomial in N and therefore polynomial in |x| as required.

We now simply fit this into the framework to yield a polynomial-time algorithm for L that makes a
single call to a #P oracle.

