
Lecture 8

Circuit Reducibility, Depth Reduction, and
Parallel Arithmetic

April 24, 2008
Lecturer: Paul Beame

Notes: Gyanit Singh

The following questions are open.

• Is P ⊆ NC1?

• Is NP ⊆ NC1?

• Is PH ⊆ NC1?

• Find an explicit f ∈ NP, such that f /∈ SIZE-DEPTH(O(n), O(log n)).

Definition 8.1 (Circuit reduction) Given a circuit complexity class C and functions f, g :
{0, 1}∗ → {0, 1}∗ we say that f ≤C g iff ∃ circuit family meeting the structural constraints of
the circuit complexity class C that computes f using gates for g added to the basis. (This means
that gates for g will have unit size and depth cost except for classes where the number of input
edges between gates are counted.)

Theorem 8.2 f ≤log g ⇒ f ≤NC g.

Proof L ⊆ NC2.

Definition 8.3 (P Complete) L is P-complete if and only if

1. L ∈ P

2. ∀ K ∈ P, K ≤NC L.

Theorem 8.4 If L is P-complete and L ∈ NC then P ⊆ NC.

Theorem 8.5 (Ladner) The circuit-value problem CV P = {〈C, x〉 | C(x) = 1} is P-complete.

Proof The reduction produces the circuit that computes the standard Cook-Levin tableau.

1

Theorem 8.6 If f ∈ NC1 then f can be computed by an AC circuit of polynomial size and depth
O(log n

log log n)

Proof By adding dummy nodes, without loss of generality we can assume that all input to output
paths in the circuit are the same length. Divide F into layers of height log2 log2 n. Since the
fan-in of the original formula is 2, each layer depends on only 2log2 log2 n = log2 n values from the
output the previous layer. Note that this layer can be replaced by a DNF or CNF formula of size
log2 n · 2log2 n+1 = 2n log2 n. Pushing negations to the inputs (and possibly doubling the size of the
circuit) reduces the depth by a 2

log2 log2 n factor. (By alternating between the use of DNF and CNF
the depth could be reduced by a further factor of 2.)

Theorem 8.7 (Valiant) For all ε > 0 if f ∈ SIZE-DEPTH(O(n), O(log n)) then f can be com-
puted by a depth 3 AC circuit of size 2O(n

log log n
) with bottom fan-in at most nε.

Proof Let C = Cn be a circuit of size m and depth d ≤ c log2 n. We will find a small set of edges
(wires) to cut which will remove all long paths (length > ε log2 n) in C. Since circuits are fan-in 2,
paths of length less than ε log2 n implies that each node depends on the value of at most nε inputs
and removed edges. Suppose that S is the set of edges removed. We can write

f(x) = ∨α∈{0,1}S fα(x)

where α represents the values carried by the edges in S and fα(x) is 1 if and only if f(x) = 1 and
the values of the wires in S on input x are equal to α. We claim that each Cα can be computed
by a CNF formula of clause size at most nε. Since the paths are length ε log2 n, the value of any
gate g in C depends on at most nε inputs or edges in S. Therefore we can write the gate value
Cg write this as a CNF formula of bottom fan-in nε in the values of these inputs or edges from
S. Once we fix α, the values of the edge in S is fixed so the resulting CNF formula Cg,α depends
only on nε inputs. Abusing notation by identifying edge edge in S with the gate that computes
it, we have that fα(x) = Co,α(x) ∧

∧
g∈S Cg,α(x) where o is the output gate of the circuit. We can

combine the levels of ∧ gates to get a CNF formula for Cα This yields a depth 3 circuit of size
2|S|(|S|+ 1)2nε+1nε of bottom fan-in at most nε.

We will now show how to pick the set of edges S such that |S| is at most km
log2 log2 n and no paths

have length more than d/2k−1 where k is an integer parameter we are free to choose. Using this we
will choose constant k so that c/2k−1 ≤ ε. For this choice of S, we have that the size of our circuit,
2|S|(|S|+ 1)2nε+1nε, is 2O(n/ log log n).

Each edge = (u, v) has endpoints at different depths. Classify each edge according to the most
significant bit at which the depth of the endpoints differ. Pick the set I to be the k least popular
(minimum number of edges assigned to these bits) classes according to this classification. The set
S will be all edges whose associated class is in I.

Let’s write ` = dlog2 de, so I ⊆ {0, . . . , `− 1}. Observe that for any edge (u, v) if (u, v) is not in
the class for bit i then if we remove the i-th bit from both the bit strings for the depths d(u) and
d(v) producing d(u)̄i and d(v)̄i, then d(u)̄i < d(v)̄i. (Either d(u) and d(v) agree on the i-th bit or
they disagree on a more significant bit than bit i.) More generally, if edge (u, v) is not assigned to
any bit in set I then d(u)Ī < d(v)Ī . Therefore if v1, . . . , vr are the nodes along a path in the circuit

2

none of which is classified as a bit in I then d(v1)Ī < d(v2)Ī < · · · < d(vr)Ī . This sequence consists
of r distinct bit strings of `− k bits so r ≤ 2`−k < 2d/2k = d/2k−1.

Note: For depth 2 circuits we know a size lower bound of n2n as parity requires CNF and DNF
formulas of that size. To make use of Valiant’s Lemma [8.7] only requires that we extend this to a
similar bound for depth 3.

Last time we saw that NL ∈ NC2. We now see that NC1 contains many other natural problems.

Theorem 8.8 Parity ∈ NC1, and Integer-Addition ∈ AC0.

Proof The proof for parity is based on the balanced circuits discussed in the last lecture.
We can write sum of two n-bit numbers x, y using the standard binary computation using sum

and carry bits. The sum i-th bit of the sum si = xi ⊕ yi ⊕ ci where ci is the carry bit. The i-th
carry bit ci is 1 iff it is generated in some column j to the right of column i, and is propagated in
every column between j and i. That is,

ci = ∨j<i[(xj ∧ yj) ∧ ∧j<k<i(xk ∨ yk)]

which yields a polynomial-size constant depth unbounded fan-in circuit.

Theorem 8.9 Iterated-Addition of n n-bit integers ∈ NC1.

Proof The so-called Wallace tree circuits can achieve this. Observe that For x + y + z = u + v
where u and v are n + 1-bit integers given by expressing xi + yi + zi as the 2-bit binary integer
vi+1ui. u and v can be produced from x, y, and z in constant depth fan-in 2 circuits. Using this
trick in parallel we can reduce the original sum of n n-bit intgers to the sum of d2n/3e integers of
n + 1 bits each. Recursing log3/2 n times we get that in O(log n) depth and polynomial size the
original sum can be reduced equivalent to adding two n + log3/2 n-bit integers. We apply the NC1

translation of the above AC0 circuit to compute this.

The usual elementary school method for integer multiplication shows the following and the
derived circuits are known as Wallace tree multipliers.

Lemma 8.10 Multiplication ≤NC0 Iterated-Addition ∈ NC1.

Wallace tree multipliers are conceptually simple but somewhat large. More efficient circuits of
O(log n) size and O(n log2 n) depth can be produce using FFTs.

By taking an n-bit input x, producing x′ = xn0`xn−10` · · · 0`x1 where ` > log2 n and multiplying
this by y′ = 10`10` · · · 0`1 and taking the middle bit of x′ · y′ we derive the following:

Lemma 8.11 Parity ≤NC0 Multiplication.

By using iterated addition on the individual bits and comparing the result to dn/2e we ob-
tain that Majority ∈ NC1. In AC0 we can compare two integers and by counting the results of
comparisons using iterated addition and using selection we obtain that Sorting ∈ NC1.

The last of the basic arithmetic operations is integer division.

3

Theorem 8.12 (Beame, Cook, Hoover) Division ≤AC0 Iterated-Addition ∈ NC1.

Proof We first show how to reduce integer division to integer powering which is to compute the
n-th power of an n-bit integer. Let 2r−1 ≤ y < 2r. To determine r we merely need to determine
the most significant bit of y which can be done in AC0. Then

x

y
=

x

2r(1− ŷ)
=

x

2r
(1 + ŷ + ŷ2 + · · ·+ ŷn+1) + ...

Since ŷ ≤ 1/2 it suffices to take O(n) terms of this series to compute dx/ye. It now remains to
compute integer powering using Iterated-Addition.

To do this we will describe a highly non-uniform algorithm since that will be simpler. If x is
n bits long then xn is n2 bits. Let p1, . . . , pn2 be the first n2 primes. To compute xn it suffices
to compute it modulo M =

∏n2

i=1 pi which is larger than 2n2
. Observe that by the prime number

theorem, pn2 is O(n2 log n) and therefore only O(log n) bits long.
One can use the Chinese remainder theorem to compute xn mod M where M =

∏n2

i=1 pi by
first computing ai ≡ x mod pi for i = 1 to n2. We then compute ci = an

i mod pi. By the Chinese
remainder theorem xn mod M is congruent to

∑n2

i=1 ciui mod M where ui is congruent to 1 modulo
pi and 0 modulo pj for j 6= i. (In fact, ui = viwi where vi = M/pi and wi = v−1

i mod pi. We will
show that all of these computations can be AC0 reduced to iterated addition.

First, we can hardwire in the values of M and all the primes since these depend only on the
input size n. Second, we can hardwire approximations to 1/pi and using iterated addition compute
the product of x and 1/pi to derive each ai. Assume for now that from the ai we can compute the
ci values. We can hardwire in the ui values since these depend only on n. At the end by computing
C =

∑
i uici using a applications of iterated addition to compute each product in parallel and

then another iterated addition to compute the sum. we have that C ≡ xn (mod M). However,
C may not be between 0 and M . Note, though that 0 ≤ ui < M so uici ≤ Mn2 log n and thus
0 ≤ C =

∑
i uici ≤ Mn4 log n. We can try by subtracting all n4 log n multiples of M in parallel to

find the value of C mod M .
It remains to compute each ci = an

i mod pi for each i in parallel. To do so we observe that Z∗
pi

is cyclic with generator gi since pi is prime. If ai = 0 we set ci = 0. Otherwise, find bi such that
ai = gbi

i mod pi where 0 ≤ bi < p. This is the discrete lagorithm of ai. Then ci = gnbi
i mod pi. The

circuit will have a table of logarithms for each prime pi (and its inverse table of exponentiation).
The algorithm will find bi from the logarithm table, compute di = nbi mod (pi−1) (using hardwired
approximations of 1/(pi−1)) and then use the table of exponentiation mod pi to recover ci. Lookup
tables can be done in AC0.

The above circuit is highly non-uniform. It suffices to hard-wire in a single modulus M =
(
2m
m

)
for suitable m that is O(n2). (One must use prime powers instead of primes in this case. Working
modulo prime powers one still has single generators for the multiplicative group except in the case
that the prime is 2 in which case one will have two generators.) Subsequently, Chiu, Davida, and
Litow showed using multiple Chinese Remainder representations how more complicated versions of
these circuits can be made log-space uniform. Finally, Hesse showed how to extend this idea to
create highly uniform circuits of constant depth using majority gates.

4

