
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 10: Hardness of approximating clique, FGLSS graph
Nov. 2, 2005

Lecturer: Venkat Guruswami and Ryan O’Donnell Scribe: Ioannis Giotis

1 PCP Theorem recap
We will review the most important points in the PCP theorem proof (a description of this also
appears at the end of the notes for the previous lecture). Let’s start by noting that the main theme
in the proof was a gap producing reduction. Unlike the original PCP theorem proof which created
the gap in one step and the bulk of the proof was about fixing all the parameters, mainly the alphabet
size, the proof we presented was creating the gap slowly in a sequence of steps. At each step, we
were transforming G into G′, where both of them were constraint graphs over some alphabet Σ0.
Beginning with gap(G) ≥ 1/n, we applied the process O(log n) times where at each step the
following properties were maintained.

gap(G′) ≥ 2gap(G)

size(G′) = O(size(G))

Pictorially, the process looks like this
G −→ H −→ H ′ −→ G′

↓ ↑ ↓ ↑ ↓

constant degree

expander

gap amplification

gap(H′) ≥ t · gap(H)

constraint graph

over Σ′,|Σ′| � |Σ|

• composition with an

assignment tester

• Error Correcting Codes

constraint graph

again over Σ0

The most important technical tools we used in the proof were

• Edge-expansion and behavior of random walks in expanders

• Error-correcting codes (for modular composition using an assignment tester)

• Construction of the assignment tester (which was a “direct”, albeit inefficient, PCP reduc-
tion)

– Linear functions, Hadamard code

– Linearity (or Hadamard codeword) testing, self-correction of Hadamard code.

– Fourier Analysis over the Boolean hypercube

– Basic linear algebra

1

2 Hardness of approximating CLIQUE

Remark 2.1. The PCP theorem is a great tool that can be used to examine the approximability of
problems. As in the typical complexity theory, once we have one Hardness of Approximation result,
we are able to extend this to many problems using the method of reduction. In fatc, in many cases
we only have to look at the existing NP − completeness reductions and find that these reductions
“preserve gaps”.

We will proceed to present the hardness of approximating CLIQUE via such a gap-preserving
reduction from 3SAT . The “usual” NP-completeness reduction from 3SAT to CLIQUE itself
is gap-preserving and can prove the result below (Exercise). We will describe a slightly different
reduction with an eye towards generalizing it to work with any PCP as starting point.

Definition 2.2. GapCLIQUE ρ:Given ρ ≤ 1, a graph G and an integer k, we wish to distinguish
between the following two cases

YES: ω(G) ≥ k, G has a clique of size k

NO: ω(G) < ρk, G has no clique of size ≥ ρk.

To show the hardness of approximating CLIQUE , we will now show that the respective gap
problem is NP -hard.

Theorem 2.3. ∃ρ < 1, such that GapCLIQUE ρ is NP -hard.

Proof. Given a formula φ we wish to output a graph G and an integer k. In particular we wish to
reduce in the following way

φ ∈ 3SAT ⇒ ω(G) ≥ k (1)
φ /∈ 3SAT ⇒ ω(G) < ρk (2)

Thanks to the PCP theorem we can instead use a reduction that begins with a gapE3SAT in-
stance. In other words, it suffices to give a polynomial time reduction of the form ψ →< G, k >
such that

ψ ∈ E3SAT ⇒ ω(G) ≥ k (3)
Any asignment satisfies < (1− ε) fraction of ψ’s clauses ⇒ ω(G) < ρk (4)

Let ψ be on n variables x1, . . . , xn and m clauses c1, . . . , cn. We create m rows of vertices, one
for each clause. Each row consists of 7 vertices corresponding to all the satisfying assignments that
satisfy the respective clause. Recall that there are precisely 7 partial assignments on 3 variables that
make a clause satisfiable and 1 that makes it unsatisfiable. For example, for a clause of the form
(x1, x2, x3) the 7 vertices would correspond to the assignments 000, 010, 011, 100, 101, 110, 111.

Every row in the graph will be an independent set. Edges between rows are joining vertices
whose assignments are consistent. For example a vertex that corresponds to a clause (x1, x2, x3)

2

and an assignment 011 will be connected to a vertex of a clause (x1, x4, x5) and of assignment 000
as they share the same assignment on x1. If there are no shared variables between the vertices,
their assignments are considered consistent and hence we place an edge.

Since every row is an independent set, it is clear that the largest clique in the graph will be of
size at most m. On the other hand, if ψ ∈ E3SAT it is easy to see that by picking one vertex from
each row corresponding to the satisfying assignment, we will form a clique of size m.

For the other direction we will show that if ω(G) ≥ ρm, then ψ is ρ-satisfiable. To see this, we
observe cliques in G correspond to partial assignments to variables of ψ. Such an assignment is
obtained as follows. If the clique contains a vertex from the row corresponding to some clause C,
then the three variables in that clause are assigned based on which of the 7 assignments the clique
picked in that row. This assignment is consistent since C is a clique, and thus a variable is given
the same value in all the clauses containing it that are picked by C. Extend the partial assignment
to all variables in an arbitrary way. The resulting assignment satisfies all the clauses for which C
contained a vertex from the corresponding row. This means at least ρm clauses are satisfied by the
assignment.

2.1 A general reduction from a PCP verifier
An alternative way to look at the above is as a prover-verifier test. The verifier randomly picks
clauses and verifies them and we can think of each row as a random test. We’ll now present more
formally a general reduction from a PCP verifier to CLIQUE .

Suppose 3SAT ∈ PCP1,s[r, q]. This means that for any 3CNF formula φ, there is a probabilis-
tic polynomial time verifier V that checks a binary proof π claiming that φ ∈ 3SAT by tossing r
random coins, picking (up to) q locations of π to query based on r, φ, and then accepting/rejecting
based on the bits in those q locations. The verifier V satisfies the following requirement:

φ ∈ 3SAT ⇒ ∃π s.t. V accepts with prob 1 (5)
φ /∈ 3SAT ⇒ ∀π , V accepts with prob < s (6)

We call r and q respectively the randomness complexity and query complexity (or number of
queries) of the verifier V .

Remark 2.4. We can now state the PCP theorem as

PCP theorem: ∃q = O(1) s.t. 3SAT ∈ PCP1,1/2[O(log n), q]

The previous reduction from gap3SAT to CLIQUE can be generalized by defining a graph
based on any PCP verifier (with the earlier construction being the one for the “simple” verifier
that picked a random clause and checked that it was satisfied). Such a graph is called the FGLSS
graph after Feige, Goldwasser, Lovasz, Safra and Szegedy who first realized the connetion between
clique approximation and probabilistic proof checking in their seminal FOCS 1991 paper that
spurred intense activity on PCPs and ultimately the discovery of the PCP theorem. Even though we
presented the natural connection between NP-hardness of gap3SAT and PCP at the very beginning

3

of this class, in fact the initial connection between approximation and PCPs was for gapCLIQUE,
via the FGLSS graph, and only later was the connection to gap3SAT realized.

We now describe the FGLSS graph for a PCP verifier with randomness and query complexi
r, q respectively. The graph consists of R = 2r rows of vertices, each row with ≤ 2q vertices. The
vertices in each row correspond to the views on queried bits that make the verifier accept. We place
edges between vertices that represent consistent partial views. In particular, this means there are
no edges within a row. Two rows that query disjoint sets of bits have a complete bipartite graph
between them.

As with the reduction from 3SAT , cliques in the FGLSS graph correspond to partial proofs
and their size corresponds to the number of random choices of the verifier for which it accepts this
partial proof. In particular, the existence of a clique of size M implies the existence of a proof that
V accepts with probability at least M/2r, and vice versa.

We now see that

If 3SAT ∈ PCP1,s[r, q] (7)
then φ ∈ 3SAT ⇒ ω(G) = 2r = R (8)

φ /∈ 3SAT ⇒ ω(G) ≤ sR (9)

The construction of the FGLSS graph can be performed in 2r+q ·poly(n) time. Using the above,
we can thus conclude the following connection between PCPs and hardness of approximation
CLIQUE .

Theorem 2.5. If 3SAT ∈ PCP1,s[O(log n), O(log n)] then GapCLIQUE s is NP -hard.

A simple serial repetition applied to the PCP theorem implies:

Theorem 2.6. For every integer k, 3SAT ∈ PCP1,1/2k [O(k log n), O(k)]

Picking k to be an arbitrary large constant we conclude

Theorem 2.7. ∀ε > 0, GapCLIQUE ε is NP -hard.

To get a superconstant gap, we need to pick k to be superconstant. But this makes the random-
ness r = O(k log n) super-logarithmic and the reduction no longer runs in polynomial time. But
we can conclude the following.

Theorem 2.8. ∀ε > 0, GapCLIQUE 2− log1−ε N /∈ P unless NP ⊆
⋃

c≥0 TIME(2logc n).

Proof. Let c ≥ 1 be an arbitrary integer. Pick k = logc n where n is the size of the 3SAT formula.
Then

N ≤ 2r+q < 2O(logc+1 n)

We then have
gap =

1

2logc n
' 1

2log
c

c+1 N

Picking c larger and larger, we get the claimed gap, and the reduction runs in quasi-polynomial,
i.e., 2poly(log n) time.

4

Once we show that gapCLIQUE 1,s is NP-hard for some constant s < 1, the above strong
hardness results can also be obtained using graph products (see the problem set). Moreover, the
hardness factor can be strengthened to n−δ for some δ > 0 (again, see problem set). Much stronger
hardness bounds that rule out a nε−1-approximation algorithm for any ε > 0 are known. However
this is much harder to prove and we won’t discuss this in the course.

3 Overview of the rest of the course
For the rest of the class, we will present hardness of approximation results and reap some of the
benefits of our hard work in proving the PCP theorem. Unlike decision problems where we have
a nice classification of most problems, for lots of approximation problems we don’t really know
where to classify them. Let’s see the various “hardness” categories.

1. Hardness of decision problems. Here we have the usual classification of decision problems
with the “mother” of all problems being 3SAT .

2. Slight hardness of approximation results. In this category we consider problems for which
hardness of (1−ε)-approximating is shown for some ε > 0. Alternatively, these are the prob-
lems for which there is no Polynomial Time Approximation Scheme (PTAS). The mother of
all problems in this category is GapE3SAT 1,0.99.

3. Optimal (very strong) hardness of approximation results. This category captures the
problems for which very strong hardness results are known. As an example considerE3LIN .

Definition 3.1. E3LIN: Given a bunch of 3 variable linear equations mod 2 (each of the
form xi1 ⊕ xi2 ⊕ xi3 = bi where bi ∈ {0, 1}), we wish to find an assignment that satisfies a
maximum number of the equations.

It is easy to see that there exists a 1/2 approximation algorithm for E3LIN ; just pick a
random assignment (or alteratively, when each equation has exactly three distint variables,
we can take the better of the all 0’s and the all 1’s assignment). On the other hand, we have
the following theorem due to Håstad.

Theorem 3.2. For all ε > 0, Gap− E3LIN1−ε,1/2+ε is NP -hard.

Corollary 3.3. For any ε > 0, there is no polynomial time (1/2+ε)-approximation algorithm
for E3LIN unless P = NP .

The mother of all problems in this category (of very strong or tight inapproximability results)
is a constraint graph problem known as Label Cover. We will discuss hardness results for
this problem beginning in the next lecture.

5

	PCP Theorem recap
	Hardness of approximating CLIQUE
	A general reduction from a PCP verifier

	Overview of the rest of the course

