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1 LabelCover Problem
The “Label-Cover problem” (also called “Raz’s Verifier”) plays an important role in proving hard-
ness of approximation for other problems: It’s the mother of all (or most) known “sharp” hardness-
of-approximation reductions. In this lecture we will introduce and discuss the Label-Cover prob-
lem. We will then spend two lectures proving a hardness for it. The remainder of the course
will involve showing strong hardness of approximation for various problems by reduction from
Label-Cover and its variants.

Definition 1.1. (Label-Cover problem over Σ) The Label-Cover problem with alphabet Σ is the
same as the MAX-CG(Σ) problem with the following three restrictions:

• The constraint graph is bipartite, with vertex set (V1, V2).

• The graph is regular on the left; i.e., each vertex in V1 has the same degree.

• The constraints have the “projection property”, where a constraint C(u,v), u ∈ V1, v ∈ V2, is
said to have the “projection property” if for every label a ∈ Σ for u, C(u,v) accepts exactly
one label for v.

When the constraints have the projection property, we can think of them as functions π(u,v) :
Σ → Σ, indicating what label for v is required, given a label for u.

As usual, we denote the gap decision version of the Label-Cover problem by Gap-Label-Cover.
The main hardness theorem we wish to prove is:

Theorem 1.2. For any ε > 0, there exists Σ, such that Gap-Label-Cover(Σ)1,ε is NP-hard.

In general, the major difficulty of proving Theorem 1.2 is showing that GAP-CG(Σ)1,ε is NP-
hard. In other words, it’s not really the bipartiteness, regularity, and projection property that make
proving the theorem difficult — it’s simply getting the soundness down to ε that is hard. Note that
the homework demonstrates that Dinur’s gap amplification methods don’t seem to be able to push
the soundness value below 1/2.

Theorem 1.2 was first proved by Raz in’95 [4] as a consequence of his Parallel Repetition The-
orem. His proof also has the very nice property that |Σ| = poly(1/ε). Feige and Kilian in ’94 [2]
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had earlier proved most of Theorem 1.2 — they just didn’t obtain the projection property. (Part
of the reason for this is that at the time, it was not known that the projection property would be
important.) Later, in the journal version of their work, they showed how to get projection, thus
giving another (easier) proof of Theorem 1.2. A downside of their proof, though, is that it requires
|Σ| = 2poly(1/ε). Since Raz’s proof is very difficult, we will only prove the Feige-Kilian version in
class. In fact, we will also not obtain the projection property, since this makes the proof a tiny bit
less complicated.

Before looking at either of these proofs, though, we will begin with a basic starting point:

Lemma 1.3. There exists a universal ε > 0 and Σ0 of constant size, such that Gap-Label-
Cover(Σ0)1,1−ε is NP-hard.

Proof. In fact, no proof is needed! If one inspects the proof we gave that MAX-CG(Σ0)1,1−10−6

that we gave (i.e., the PCP Theorem), one can see that the final constraint graph built already
satisfies the three extra properties of Label-Cover! This comes from looking at the O(1)-query
Assignment Tester to 2-query Assignment Tester reduction.

For clarity though, we will give an explicit proof. By the PCP Theorem, we know that GAP-
E3SAT1,1−ε is NP-hard for some explicit ε > 0. Given an instance of GAP-E3SAT1,1−ε, where
we have clauses C1, . . . , Cm over variables x1, . . . , xn, in the “YES” case we have that all clauses
can be simultaneously satisfied and in the “NO” case at most a 1 − ε fraction of clauses can be
simultaneously satisfied. We construct a Label-Cover instance over Σ with |Σ| = 7 as follows: Let
C = {C1, . . . , Cm} and X = {x1, . . . , xn} be the two sets of vertices of the bipartite graph. For
any Cj ∈ C and xi ∈ X , there is an edge between Cj and xi if xi appears in the clause Cj . Note
that this construction guarantees that all vertices in C have degree three.

The labels on vertices in C represent how the clauses are satisfied. For each Cj ∈ C, there
are seven different assignments (corresponding to seven symbols in Σ) that satisfy Cj . The labels
for the variable vertices simply indicate a {0, 1}-labeling (5 of the 7 labels go unused here). The
constraint for any edge (Cj, xi) is satisfied if the labels on Cj and xi are consistent. That is, the
label on xi is exactly same as the assignment of xi implied by the label on Cj . Thus, for any
label on Cj , there is exactly one label on xi such that edge (Cj, xi) is satisfied. This implies that
“projection property” is satisfied.

If the GAP-E3SAT1,1−ε instance is “YES”, then we can just label vertices according to the
satisfying assignment, and thus all edges are satisfied. On the other hand, if the GAP-E3SAT1,1−ε

instance is “NO”, any assignment of variables violates at least an ε fraction of clauses, and for
each of those, at least one of the the corresponding edges is violated. Overall, this means that every
assignment to the new constraint graph violates at least an ε/3 fraction of the edge-constraints.

2 2-Prover 1-Round Games
An equivalent way to look at bipartite CG problems is through the language of “2-prover 1-round
games” (2P1R).
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Definition 2.1. (2-Prover 1-Round Game) A 2P1R game G is played by two players (or provers)
P1 and P2, and has the following parameters:

• a set of questions X for P1

• a set of questions Y for P2

• an answer set A

• a probability distribution λ on X × Y

• an acceptance predicate V on X × Y × A× A.

• strategy f1 : X → A and f2 : Y → A

The game is played as follows:

• a verifier picks (x, y) ∈ X × Y according to λ, and asks x to P1 and y to P2

• P1 answers a = f1(x) and P2 answers b = f2(y)

• the verifier tests the predicate V (x, y, a, b); the players P1 and P2 win if the predicate is
satisfied, and lose otherwise.

We stress that 2P1R games are precisely equivalent to weighted, bipartite constraint-graph
sastisfaction problems; we have X = V1, Y = V2, A = Σ and λ is the weighted distribution on
edges.

Definition 2.2. Given a 2P1R game G, we say the value of G, denoted by ω(G), is the probability
(over λ) that P1 and P2 win, when they use optimal strategies.

Value corresponds to the maximum fraction of simultaneously satisfiable constraints in a bi-
partite constraint graph.

3 Transformation on 2P1R games; parallel repetition
To prove Theorem 1.2 from Lemma 1.3, we would like to come up with a polynomial time reduc-
tion that greatly reduces the value of Label-Cover instances. In other language, given a 2P1R game
G with ω(G) < 1, how can we get a new 2P1R game G′ with ω(G′) < ε for any ε > 0? (The
transformation should also have the property that ω(G′) = 1 when ω(G) = 1.) Fortnow, Rompel,
and Sipser in ’88 [3] proposed the following answer to this question: repeat the game G k times in
parallel. That is, construct game Gk as follows:

• P1 has question set Xk, and P2 has question set Y k

• the answer set is Ak
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• the verifier picks (x1, y1), . . . , (xk, yk) independently according to λ

• the verifier sends all x1, . . . , xk simultaneously to P1, and y1, . . . , yk simultaneously to P2

• the verifier gets back answers a1, . . . , ak from P1, and b1, . . . , bk from P2.

• Gk’s acceptance predicate is V (x1, y1, a1, b1) ∧ · · · ∧ V (xk, yk, ak, bk). That is, the players
win if they win in every coordinate.

FRS claimed that w(Gk) = w(G)k. However, this is not correct; Fortnow found a counterexample.
We give here another very simple counterexample, due to Feige. It is based on the “Noninteractive
Agreement” (NA) game.

Definition 3.1. (Noninteractive Agreement 2P1R Game) Call the provers P0 and P1. The NA 2P1R
game is as follows:

• The verifier flips two independent coins b0 and b1, and sends b0 to P0 and b1 to P1. (I.e.,
X = Y = {0, 1} and λ is uniform.)

• Each prover answers an element from the set {P0, P1} × {0, 1}, representing a “guess” as
to the coin flip for one of the players. The players win the game if both of them give the same
answer and this answer agrees with reality (that is, if they both answer is (P0, 0), then b0

should equal 0).

Note that if a prover decides to answer herself, then of course it should be consistent with the
reality, so the only problem is how should the other prover replies.

Lemma 3.2. ω(NA) ≤ 1/2 (actually, it’s = 1/2).
Proof sketch. One player always has to guess a coin flip that he knows nothing about. �

Lemma 3.3. ω(NA2) ≥ 1/2 (actually, it’s = 1/2).
Proof idea. Consider the following strategy for P0 and P1: Both provers always answer with a
guess for P0’s round one coin and with a guess for P1’s round two coin. One part of these guesses
they can correctly fill in for themselves; for the other part, they operate under the assumption
that P0’s first round coin equals P1’s second round coin. Whenever this actually happens (with
probability 1/2), both players will be completely right on both rounds. �

For a fuller discussion of this counterexample, see the side note on the course web page.

It’s of interest to analyze what happens when this game is repeated k times. For simplicity, let
k be even. By using the above strategy k/2 times on pairs of rounds, it’s easy to see that the players
can with with probability at least 2−k/2. Feige showed this is sharp:

Theorem 3.4. (Feige’91 [1]) When k is even, ω(NAk) = 2−k/2 = (1/
√

2)k.
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This theorem shows that for this 2P1R game NA, ω(Gk) goes indeed go down exponentially in
k — just with a different base in the exponent than ω(G).

In fact, this always happens; this is the content of Raz’s Parallel Repetition Theorem:

Theorem 3.5. (Parallel Repetition Theorem (Raz’95 [4])) Let s < 1 and |A| be two constants.
There exists s′ < 1 (only depending on s and |A|) such that for any 2P1R game G with answer set
A and ω(G) = s, ω(Gk) < (s′)k, for any k ≥ 1.

We will not prove the theorem in class. Note that if k = O(log 1/ε), we have ω(Gk) < ε and an
answer size of poly(1/ε). As a corollary of the Parallel Repetition Theorem, we get Theorem 1.2:

Proof. By reduction from Lemma 1.3: View a given Label-Cover instance as a 2P1R game, and
repeat the game O(log 1/ε) times in parallel. Then view this game as a bipartite CG problem again.
It is easy to check that it is in fact a Label-Cover instance: parallel repetition preserves regularity
and the projection property.
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