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Lecture 12: “Confuse/Match” Games (I)
Nov. 9, 2005

Lecturer: Ryan O’Donnell Scribe: Ning Chen

1 Confuse/Match Games

Feige and Kilian [1] showed something similar to the Parallel Repetition Theorem if the 2P1R
gameG has some extra property, as the following theorem shows.

Theorem 1.1.Lets < 1 be a constant. SupposeG is a “confuse/match”-style game withω(G) ≤
s. Then ifk = poly(1/ε), ω(Gk) < ε.

We will prove this theorem by the end of the next lecture.

Definition 1.2. (Confuse/Match Game)Let G be any 2P1R game with the projection property.
Then theconfuse/matchversion, denoted byGc/m, works as follows:

With probability 50%, the verifier plays the original gameG (this is a “match round”).
With probability 50%, the verifier:

• picks two sets of questions independently,(x1, y1) and(x2, y2)

• sendsx1 to P1, sendsy2 to P2

• always accepts

(this is a “confuse round”).

Remarks:

• The “confuse” part is indeed confusing to the provers, in thatP1 andP2 see their normal
probability distribution on questions, and cannot tell if the verifier is doing “match” or “con-
fuse”.

• It is easy to see that ifω(G) = 1− δ, thenω(Gc/m) = 1− δ/2.

• If the game is played only once, using the confuse/match version of the game is pointless. It
only helps if the game is played with parallel repetitions.

• Despite the fact that we consider only gamesG with the “projection property”, the con-
fuse/match versionGc/m will not have the projection property (so neither will the parallel
repeated version). Feige and Kilian [1] fixed this via a new style game called miss/match
game: Instead of “confuse” part, we have a “miss” part as follows: The verifier
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– picks(x, y) as usual,

– sendsx to P1,

– sends “miss” toP2,

– always accepts assumingP2’s answer is “miss”.

Miss/match games indeed have the projection property, and Theorem1.1 holds for them as well
(with 99.5% of the proof details being the same). For simplicity, we will just focus on con-
fuse/match games though.

Intuition for Theorem 1.1. The intuition for the theorem is roughly as follows. Focus onP2’s
strategy. On the one hand (roughly speaking), this strategy could be “mostly serial”, meaning that
the answers it gives in theith coordinate more or less only depends on the question it gets in the
ith coordinate. In this case,P2 is not taking advantage of the fact that it gets to see all its questions
simultaneously, and it will win on all coordinates only with exponentially small probability. On the
other hand (roughly speaking),P2’s answers could strongly depend on many question-coordinates
simultaneously. However, for any confuse-round questionP2 bases an answer on,P1 has no infor-
mation about whatP2 sees. Thus it is very hard forP1 to coordinate withP2 given such a strategy.

Indeed, most of the proof of Theorem1.1is devoted to making a dichotomy statement like this
about strategies rigorous. Having done that, the proof that the provers win with low probability is
quite easy.

In fact, this dichotomy theorem and the same intuition equally well explains why the Theorem
holds for miss/match games. In this case, focus onP1’s strategy. If it is mostly serial, the players
will win only with exponentially small probability. Otherwise, answers are based on the questions
in many coordinates — and on many of these coordinatesP2 only sees “miss”. In other words, it’s
really only necessary thatoneof the provers be “confused”. (In confuse/match games,both get
confused.)

2 Revealing a single random question changes little — a lemma

Lemma 2.1. Let X be a set andγ a probability distribution onX. Letf : XC → {0, 1}, c ≥ 1,
where we think ofXC as having the product probability distributionγC . Let

µ = E
~x∈γc

[f(~x)] = Pr
~x∈γc

[f(~x) = 1].

Suppose we picki ∈ {1, . . . , c} uniformly at randomly and pickxi ← γ at random. Let

µ̃ = µ̃i,xi
= E

x1,...,xi−1,xi+1,...,xc

[f | xi].

Then we have
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(a)
0 ≤ E

i,xi

[
(µ̃− µ)2

] ≤ µ/C ≤ 1/C

(a’)
E
i,xi

[
(µ̃− µ)2

]
= E

i,xi

[
(µ̃)2

]− µ2

(b)
Pr
i,xi

[|µ̃− µ| ≥ δ] ≤ δ, whereδ = 1/
3
√

C

Plausibility argument. At one extreme,f ’s value might depend on many coordinates (imagine
X = {0, 1} andf is the Majority function); then knowing one coordinate does not make much
difference. At the other extreme,f ’s value might only depend on a single coordinate (imagine
f(~x) = xi); but then the probability that we picki to be this coordinate is only1/C.

The rest of this section is devoted to the proof of this lemma.

For part (a’), we have

E
i,xi

[
(µ̃− µ)2

]
= E

i,xi

[
(µ̃)2

]− 2µ E
i,xi

[µ̃] + µ2

= E
[
(µ̃)2

]− 2µE
~x
[f(~x)] + µ2

= E
[
(µ̃)2

]− 2µ2 + µ2

= E
[
(µ̃)2

]− µ2.

Part (b) follow easily from part (a):

Pr
i,xi

[
|µ̃− µ| ≥ 1/

3
√

C
]

= Pr
[
(µ̃− µ)2 ≥ 1/C2/3

]

≤ E[(µ̃− µ)2]

1/C2/3

≤ 1/C

1/C2/3

= 1/
3
√

C,

where the first inequality is by Markov inequality and the second one is by part (a).

So it remains to prove part (a). For anyi ∈ {1, . . . , C}, definef i : X → R, where

f i(xi) = E
x1,...,xi−1,xi+1,...,xc

[f | xi]− µ.
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By abuse of notation, we will also writef i : XC → R, wheref i(~x) = f i(xi). Let us also define
Wi = Exi

[f i(xi)
2]. Thus, we have

E
i,xi

[
(µ̃− µ)2

]
= E

i

[
E
xi

[(µ̃− µ)2]

]

= E
i

[
E
xi

[f i(xi)
2]

]

=
1

C

C∑
i=1

E
xi

[
f i(xi)

2
]

=
1

C

∑
i

Wi.

Hence all we need to show is
∑C

i Wi ≤ µ.

Fact 2.2.
E
xi

[
f i(xi)

]
= 0.

Proof.

E
xi

[
f i(xi)

]
= E

xi

[
E

x1,...,xi−1,xi+1,...,xc

[f | xi]− µ

]
= E[f ]− µ = 0.

¤

Fact 2.3. If i 6= j, then
E
~x

[
f i(~x)f j(~x)

]
= 0.

Proof.

E
~x

[
f i(~x)f j(~x)

]
= E

xi,xj

[
f i(xi)f

j(xj)
]

(f ` depends only onx`)

= E
xi

[
f i(xi)

] · E
xj

[
f j(xj)

]
(xi andxj are independent)

= 0 (Fact2.2),

¤

Finally, let us defineg : Xc → R by g(~x) =
∑C

i=1 f i(~x). Thus,

0 ≤ E
~x

[
(f(~x)− g(~x))2

]
= E

~x

[
(f(~x))2

]− 2E
~x

[f(~x)g(~x)] + E
~x

[
(g(~x))2

]

Note that

1.
E
~x

[
(f(~x))2

]
= µ (sincef is 0-1 valued)
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2.

E~x [f(~x)g(~x)] =
∑

i

E
~x

[
f(~x)f i(~x)

]

=
∑

i

E
xi

E
xj :j 6=i

[
f(xi; xj ’s)f i(xi)

]

=
∑

i

E
xi

[
f i(xi) E

xj :j 6=i
[f(xi; xj ’s)]

]

=
∑

i

E
xi

[
f i(xi)(f

i(xi) + µ)
]

(by definition off i)

=
∑

i

Wi +
∑

i

µ · E[f i]

=
∑

i

Wi (by Fact2.2)

3.
E
~x

[
(g(~x))2

]
=

∑
i,j

E
[
f i(~x)f j(~x)

]
=

∑
i=1

Wi (by Fact2.3)

Putting the above three equalities together, we have0 ≤ µ−2
∑

i Wi +
∑

i Wi = µ−∑
i Wi. This

completes the proof of the lemma.

3 Predictability

Definition 3.1. Let P : Qc → Ac be a prover strategy, whereQ is the set of questions andA is
the set of answers; letγC be a product distribution onQC as before. LetR ⊆ {1, . . . , C}, R 6= ∅.
Define the predictability as follows

PredictabilityR(P ) ,
∑

~a∈AR

(
Pr

~q∈γC
[P (~q)[R] = ~a]2

)
.

Here are some observations

• If there were no square in the definition, the sum would always be 1.

• 0 < PredictabilityR(P ) ≤ 1.

• If P (~q)[R] is completely determined, then PredictabilityR(P ) = 1.

• If P (~q)[R] is uniformly distributed on some set of sizeN , then PredictabilityR(P ) = 1/N .

• If i /∈ R, then PredictabilityR∪{i}(P ) ≤ PredictabilityR(P ), and the equality holds if and
only if the answers onR force the answer oni.
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From Theorem1.1, we have the following rather easily:

Corollary 3.2. LetR 6= ∅ be any set, andP : QC′ → AC . Supposei andqi are chosen randomly
as in Theorem1.1; then,

E
i,qi

[PredictabilityR(P | i, qi)]− PredictabilityR(P ) ≤ 1/C ′.

Proof. For each~a ∈ AR, let f~a : QC′ → {0, 1} be the indicator thatP (~q)[R] = ~a. Let

µ~a = E
~q
[f~a(~q)] = Pr

~q
[P (~q)[R] = ~a],

and
µ̃~a,i,qi

= E[f~a | i, qi].

Due to Theorem1.1(parts (a) and (a’)), for any~a, we have

E
i,qi

[
(µ̃~a,i,qi

)2
]− µ2

~a ≤
µ~a

C ′ .

Sum over all~a, and notice that
∑

~a µ~a = 1; we are done. ¤
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