
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 17: MAX-CUT: Approximation and Hardness
Nov. 29, 2005

Lecturer: Venkatesan Guruswami Scribe: Vibhor Rastogi

1 Overview
We begin by looking at algorithms for approximating the MAX-CUT problem. In particular, we
will study the Goemans-Williamson’s algorithm which provides the best known approximation
result for MAX-CUT. In the end, we will see a 2 query long-code test which will be used in the
next lecture to prove hardness results for MAX-CUT.

2 Problem Definition
Definition 2.1. : MAX-CUT is the following graph problem: Given a graph G = (V, E) and a
weight function w : E 7→ R+ such that each edge (u, v) in the graph has a weight wuv. Find a cut
S ∪ S = V that maximizes ∑

u∈S,v∈S,(u,v)∈E

wuv

As an example, we note that the bipartite graph has maxcut exactly equal to the sum of the
weights of all its edges. A particular case of the MAX-CUT problem occurs when all the edge
weights are reduced to unity. In that case it becomes equivalent to the MAX-2COLORING prob-
lem. In the MAX-2COLORING problem, we try to find the maximum number of edges in a given
graph G which can be colored by using only two colors.

3 Simple Approximation Algorithms
There is a simple 1

2
-approximate randomized algorithm for MAX-CUT which works by choosing

a cut at random. This means that each edge (u, v) in G is cut with probability 1
2
. Thus the expected

weight of the edges crossing the cut, A(I), is

A(I) =

∑
(u,v)∈E wuv

2
≥ OPT (I)

2

The above algorithm can be easily derandomized to get a 1
2
-approximate deterministic polyon-

imal time algorithm for MAX-CUT.

1

For the unweighted version of MAX-CUT i.e. when all the edges have unit weights, there is a
simple 1

2
-approximate algorithm. The algorithm follows a method of iteratively updating the cut.

1. Initialize the cut S ∪ S arbitrarily.

2. For any vertex v which has less than 1
2

of its edges crossing the cut, we move the
vertex to the other side of the cut.

3. If no such vertex exists then stop
else goto step 2

It is easy to see that in each iteration, the edges crossing the cut increase by at least one. Since
maxcut is atmost the number of edges in the graph, the algorithm would terminate in linear number
of iterations. It is also easy to see that when algorithm terminates the cut would have size ateast half
of the total number of edges. Thus the algorithm is 1

2
-approximate. However, the algorithm does

not genrealize well to the weighted version of MAX-CUT as it may no longer run in polynomial
time in the size of the inputs.

It can also be shown that a ratio of more than 1
2

cannot be achieved if we use
∑

(u,v)∈E) wuv as
the upper bound for the maxcut. Complete graphs are an example of graphs in which the maxcut
is half the size of the upperbound. The ratio 1

2
remained as the best known for quite a long time

until Goemans-Williamson found an algorithm that obtained a much better approximation ratio.

4 Goemans-Williamson Algorithm
Goemans-Williamson algorithm provides the best known approximation result for MAX-CUT.
Another improtant aspect of the algorithm lies in the first ever use of semi-definite programming
for approximation. Since then semi-definite programming has been applied to obtain good approx-
imation algorithms for many other important problems.

4.1 MAX-CUT as Quadratic Programming problem
Associate with each vertex vi a variable xi which takes value 1 or -1. Let S ∪ S be any arbitrary
cut. We define xi = 1 ∀vi ∈ S and xi = −1 ∀vi ∈ S. Note that xixj is -1 iff (vi, vj) belongs to the
cut. Thus (1−xixj)

2
is 1 if (vi, vj) belongs to the cut and 0 otherwise. Thus the following quadratic

program is equivalent to MAX-CUT problem.

MAX
∑

(vi,vj)∈E

wij
(1− xixj)

2

subject to xi ∈ {−1, 1} ∀vi ∈ V

2

4.2 Relaxation to Semi-Definite Program
A semi-definite program is a quadratic program with the following properties

• Each variable is a vector ui

• Constraints are defined on linear combination of pairwise dot products i.e. ui · uj

• Objective function is also a linear combination of ui · uj

For the quadratic program defined above, we form a semi-definite program by relaxing each
variable xi to a vector ui of n dimensions.

MAX
∑

(ui,uj)∈E

wij
(1− ui · uj)

2

subject to ui · ui = 1

The above SDP can be solved in polynomial time to any degree of accuracy. We represent the
maximum obtained by the SDP as optsdp and use it as an upperbound for maxcut. This is beacuse
optsdp ≥ optMAX-CUT

4.3 Rounding and Analysis
The solution for the SDP would be a collection of vectors ui in n-dimensions. By rounding, we
mean a method of extracting a solution to MAX-CUT. We will look at such a method and analyze
it to get a bound on the MAX-CUT solution.

Method: Choose a random hyperplane in n dimensions passing through the origin. It divides
the n-dimensional space into two half-spaces. Each half-space corresponds to one particular side
of the cut. Vectors in a particular half-space denote the vertices of the original graph which belong
to that side of the cut. This uniquely defines the cut. More formally, if r represents the normal to
the randomly chosen hyperplane, we define the cut S ∪ S as

S = {vi | r · ui ≥ 0}
S = {vi | r · ui < 0}

Analysis: Consider any two vectors ui and uj . We want to estimate the probability (vi, vj)
being cut. Define r′ as the projection of r on the 2-dimensioanl plane span(ui, uj). If r was chosen
randomly using a uniform distribution, it can be proved that direction of r′ is uniform on the circle
in span(ui, uj). The probability that r′ cuts the vectors ui and uj depends on the angle θ between
the two vectors. It is easy to see that this probability is exactly equal to 2θ

2π
= cos−1(ui·uj)

π
. Thus the

3

expected value of the cut is

E =
∑

(vi,vj)∈E

wijPr{(vi, vj) is cut}

=
∑

(vi,vj)∈E

wij
cos−1(ui · uj)

π

≥
∑

(vi,vj)∈E

wijαGW
(1− ui · uj)

2

= αGW

∑
(vi,vj)∈E

wij
(1− ui · uj)

2

= αGW optsdp

≥ αGW optMAX-CUT

where we define

αGW = min
−1≤ρ≤1

cos−1ρ
π

(1−ρ)
2

= 0.87856

The minimum value of 2cos−1ρ
π(1−ρ)

occurs at the crictical value ρ = ρ∗ ≈ −0.694 (whic is roughly the
cosine of 134 degrees). Thus we have seen a randomized algorithm for approximating MAX-CUT
with a ratio of αGW = 0.87856.

5 Hardness of Approximating MAX-CUT

The best known hadrness result for MAX-CUT shows that there is no polynomial time algorithm
which can approximate it within (16/17 + ε) of the optimum unless P = NP .
However, under the assumption of Unique Games Conjecture it can be proved that the problem
GAPMAX-CUT 1−ρ

2
−ε, cos−1ρ

π
+ε

is NP hard for every ρ ∈ (−1, 0) and every ε. Thus picking ρ = ρ∗,

we get that there is no (αGW + ε)-approximate algorithm for MAX-CUT unless P = NP .
To prove this result it suffices to show that there is a 2-query PCP system with alphabet size two,
completeness c = 1−ρ

2
− ε and soundness s = cos−1ρ

π
+ ε in which the verifier makes only not-equal

checks. This is because NP-hardness of GAPMAX-CUT 1−ρ
2

, cos−1ρ
π

+ε
and the existence of such a

PCP system are equivalent.
For constructing such a PCP system we shall first develop a 2-query long-code test that makes
checks of the form b1 6= b2 only.

5.1 2-query long-code test
Given a function f : {−1, 1}n 7→ {−1, 1} we want to check whether f is a long code of some
a ∈ {1, 2, .., n}. Suppose we did the test by picking two strings x, y such that xi 6= yi for every i,

4

i.e., y = −x, and check whether f(x) 6= f(y). It is clear that the completeness for such a test is 1.
However, along with long codes the following functions also pass the test with probability 1:

1. f(x) = χS(x) where |S| is odd.

2. f is the Majority function, i.e., f(x) = sgn(
∑n

i=1 xi), (assume n is odd).

Thus the test is unable to disinguish between long codes and the above functions. A much better
test albeit with completeness less than one uses a slightly different version of this test. The test
picks a string x ∈ {−1, 1}n at random and checks f(x) 6= f(xµ) where µ is a string ∈ {−1, 1}n.
µ is chosen as follows

µi = −1 with probability 1−ρ
2

= 1 with probability 1+ρ
2

Thus the expected value of µi for each i is ρ.
Completeness: Suppose f is a long code function of some a ∈ {1, 2, . . . , n}. This implies f(x) =
xa and f(xµ) = xaµa. Thus

Pr
x,µ

[f(x) 6= f(xµ)] = Pr
x,µ

[xa 6= xaµa]

= Pr
µ

[µa = 1]

=
1− ρ

2

Soundness: Using the standard arithmetization,

Pr[Test accepts f] = E
x,µ

[
1− f(x)f(xµ)

2
]

=
1

2
− 1

2
E
x,µ

[f(x)f(xµ)]

=
1

2
− 1

2
Stabρ(f)

The quantity Ex,µ[f(x)f(xµ)] with µ distributed as above is called the stability of the function
f at parameter ρ, and denoted Stabρ(f). It is easy to show, and this was on your problem set, that
Stabρ(f) =

∑
S f̂(S)2ρ|S|. If f = χS , then Stabρ(f) = ρ|S|, which tends to 0 if |S| is large when

0 > ρ > −1. Therefore, the modified test is able to distinguish between long codes and linear
functions of large support. So we have at least taken care of the first of the two bad functions
mentioned above (for the test f(x) 6= f(−x)). The majority function remains to be contended
with. In this case, one can show (and we will sketch this in the next lecture), that the test passes
with probabilty tending to cos−1(ρ)/π (as n →∞). By appealing to a result called the “Majority is
Stablest theorem”, we will also conclude that in fact the Majority is essentially the worst function
for this test. Specifically, we will conclude that any function that passes the test with probability
cos−1(ρ)/π + ε “looks like” (in a sense that will be made precise) one of a small number of long
codes. Thus, the 2-query long code test with parameter ρ has completeness (1−ρ)/2 and soundness
cos−1(ρ)/π + ε, which matches the parameters we are ultimately after for our 2-query PCP.

5

	Overview
	Problem Definition
	Simple Approximation Algorithms
	Goemans-Williamson Algorithm
	MAX-CUT as Quadratic Programming problem
	Relaxation to Semi-Definite Program
	Rounding and Analysis

	Hardness of Approximating MAX-CUT
	2-query long-code test

