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1 UGC-hardness of MAX-CUT

Our goal in this lecture is to show that, assuming the Unique Games Conjecture (UGC), it is NP-
hard to improve upon the approximation algorithm of Goemans and Williamson for MAX-CUT.
We will need the following two “ingredients, discussed last lecture:

1. The Unique Games Conjecture: for all> 0, there is a sufficiently large: such that, if
|X| > m, then Gap-Unique-Label-Cover),_s s is NP-hard.

2. The Majority Is Stablest Theorem: Letl < p < 0, € > 0. Then,37 > 0, C' < oo, such
thatif f : {—1,1}"™ — [—1, 1] satisfies

f<C Z f

1S|<C,S5i
forall 1 < ¢ < m, then we have
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In the remainder of this lecture, we show the following:

Theorem 1.1. The Unique Games Conjecture implies thiat- 1 < p < 0 ande > 0, Gap-MAX-
CUT., w1, isNP-hard.
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Remark 1.2. Recall that this result is optimal, because the Goemans-Williamson algorithm matches
the above parameters (without the In particular, by takingp = p* ~ —.69, we can conclude
that .878-approximating MAX-CUT is NP-hard.

To begin the proof of Theore.], let - and C' be the parameters we get from Majority Is
Stablest, using ande/2. With these in hand, define
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Now by takingm := |X| large enough, we can use the Unique Games Conjecture to assert that

Gap-Unique-Label-CovéE), s s is NP-hard. We will now give a reduction from this Gap-ULC
problem to Gap-MAX-CUT.

5:



First try at a reduction. The instance of ULC is a bipartite graghwith vertex seti” andV.
The “first try” one would naturally think of for a PCP/reduction for MAX-CUT is the following:
First, expect a long-code of the label of each verteX/inn W in the “proof”. Equivalently,
associate to each vertexa block of vertices identified witfi—1, 1}, so that a cut in the resulting
graph yields a boolean functiofy : {—1,1}™ — {—1,1} for eachu € V U W. The natural try
for a test here (i.e., a natural definition for the edges in the graph we construct) is:

e Pick an edgév, w) in G at random. Call the supposed long-codes of the vertices’ Ighels
andf,.

e Let 7 denote the permutation given by the constraint on the edge.

e Pickz € {-1,1}™ uniformly at random, and pick € {-1,1}™ according to the52-
biased distribution.

o Testf,(z) # fulapom).

Herez o ;1 denotes the strinQe, (1), . . ., Zo(m))-

However, there is an immediate flaw with this reduction — the graph constructed is bipartite!
In particular, a “cheating prover” could make all of tfiefunctions forv € V' identically1 and all
of the f,, functions forw € W identically —1. This obviously does not correspond to any useful
labeling of the original Label-Cover graph, and yet it passes the test with probability 1!

To get around this problem, we use a slightly more subtle reduction.

The actual reduction. In our actual reduction we will only require long-codes for flrever-
tices; we will use these to, in a way, “infer” supposed long-codes fol'thertices.
The +# test we will use is the following:

e Pick a vertexv € V' uniformly at random andlvo random edges basedatsay(v, w) and
(v,w'). Let fu, fur : {—1,1}™ — {—1,1} denote the supposed long-codesdoandw’.

e Let7 andr’ be the permutations associated with the constraints on the two edgesand
(v, w').

e Pickz € {—1,1}™ uniformly at random, and pick € {—1,1}™ according to the'>2-
biased distribution.

o Testf,(xom) # fu((xu)on).

We will now analyze the completeness and soundness of this test.



2 Completeness of the reduction

Suppose the Unique-Label-Cover instance has an assignmer{l” U W) — X satisfying a
(1 — 0)-fraction of the edge-constraints @d. Now suppose eacfj, is a proper long-encoding of
o(w); i.e., itis theo(w)th dictator function.

The test generates two eddesw) and(v, w’). By the left regularity of the grapfy, each edge
is, individually, a uniformly random edge. Hence by the union bound, with probability— 26,
o satisfies the constraint on both edges.

So suppose both edges are satisfied bWhat is the probability the test succeeds? By defini-
tion of f,,, we have

fw<l’ e} 7T) == (l’ o} W)U(w) = Iﬂ(g(w)).

Sinceo satisfies the edge, w), we haver(o(w)) = o(v). Similarly, we have

fw ((zp) o 7') = ((xp) 0 T)gwry = (L) 2 (o (w))s

andr’(o(w')) = o(v) as well. So the test ends up testing

Tow) 7 (TH)o(w)-

With the random choice of andy, this happens iffi,,) = —1. This happens with probability
precisely’ 2.

Overall, we can conclude that the probability the test succeeds is atleat)- 1—53 > L
(using the fact that > 26).

This completes the proof of the completeness claimed in Theargm

3 Soundness of the reduction

As usual, we will prove the contrapositive of the soundness condition. To that end, suppose that
the supposed long-codég,, } are such that the test passes with probability greaterﬁ’élﬁ};aclﬁZ +e.
We will show how to “decode” these supposed long-codes into an assigememt U 1) — X
for the original ULC graphz which satisfies at least®&fraction of the constraints.

The first step is the standard “averaging” argument, with respect to the initial random choice
of v € V: Specifically, since the overall test passes with probability at I@é}‘ltﬁ + ¢, there must
be at least am/2 fraction of theuv’s such that the test, conditioned onpasses with probability
at Ieast@ + ¢/2. (For otherwise, the test would succeed with probability less than) - 1 +
(1—¢/2)- (COSWJ +€¢/2) < @ + ¢.) Let us call such’s good

The next step is to write down the test’s success probability. For this purpose, let us imagine
that in the first step of the test we have picked a goo@This happens with probability €/2.)
The subsequent success probability is then:

E [E[; — 3 u(z o) ful(zp) o )]

w,w’ T,

L~ 1 B[ E [fuleom)fu((on) o).
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We now make the following definition:

Definition 3.1. For everyv € V, define the functiop, : {—1,1}™ — [—1, 1] by setting

9o(y) = B [fu(romu)l.

wn~vY

Here w is chosen to be a random neighbor«wfandr, , is the bijection on the edge-constraint
(v, w).

The idea behind this definition is that if all thfg’s were proper long-codes of labels, each of
which was consistent with a label for theng, would be the long-code of that consistent label.
Continuing our above calculation, we have that the success probability of the test, conditioned on
having chosem first, is

2~ 2 Elgu(2)gu(ap) = 5 — 5Stab,(g).

We are now in good shape. Assumings a good vertex, we have that the above quantity is at
Ieast%_lp + ¢/2. But then we can apply the MIS Theorem to show thatust have at least one
coordinate with large;’-degree influence.

In particular, at a more intuitive levef,, must look vaguely like somgth dictator. We will
decodev to that label,j. Further, note thag, is an average of supposed long-codes (after appro-
priate permutations). I§, looks a little like thejth dictator, then we can show it must be that at
least a small fraction of the’s neighboringy look a little like ther, | (7)th dictator. Hence, if we
list-decode allf,,’s to the set of dictators they vaguely resemble, and then pick at random from this
list (we will also show this list is small), then there’s at least a slight chance of gettihg).

Let us make this intuition rigorous. We know from the MIS Theorem that for every good
there is at least one coordingte- j, such that

Inf5%(g,) > 7. (1)

We will seto(v) = j, in the overall assignment we are constructing. As for the's in 1/,
sinceInijC(gv) refers to the Fourier expansion gf, let's work out what this is. We havg, =
avVE,y Jw © Ty . NOW

fu = stfw(s)xS
= fuom = %:fw(s)(m o)
= ;fw(ﬂ_l(T))Xr
Therefore, we conclude that

g=> (ayvg fw(ﬂmL(T))> Xr-

T

4



Having computed the Fourier expansiongpf let’'s examine1):

T < Inffo(gv)

- Z gv(S)2

[S|<C,S3j

= Y (BlhEE))
IS|<C,835

< Y E[fu(="'(5)’]  (Cauchy-Schwarz)
Is1<C,535

= B Y L)

1S|<C, S35
— E[mf= (£,

w

Thus by another averaging argument, we can conclude that at legfraction ofv’s neighbors

w havelnf=¢ L) > 7/2.

We now want to “list-decode” each, into
Sy =1k : Inf%c(fw) > 7/2}

and chooser(w) randomly from this set. Assuming this set is always not too large — say, at
mostR in size — then we’re happy. The reason is that in this case, the expected fraction of ULC
constraintsr satisfies will be at least

The justification of this is that we imagine that betls chosen at random and tHat w) is chosen
as a random edge. The first term above is the probability:th&good. The second term is the
probability thatw is one of the neighbors aefwith C-degree influence in the~!(j,) coordinate of
atleastr /2. The final term is the probability that the™! (4, ) is chosen out of,, in the construction
of o.

Since we tookd = e72/(8C), we can show that there exists a labelingatisfying at least a
fraction of the constraints (and thus complete the proof) as soon as we camksko@C') /.

This follows immediately from the following easy lemma:

Lemma 3.2. Foranyh : {—1,1}" — {—1,1},
4k Inf2%(h) > n} < C/n.
Proof. The following stronger inequality completes the proof:

Zlnffc(h) =3 Y wS)?= D SIS < CY h(S

i=1 |S|<C,S3i |s|<C S



