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1 UGC-hardness of MAX-CUT

Our goal in this lecture is to show that, assuming the Unique Games Conjecture (UGC), it is NP-
hard to improve upon the approximation algorithm of Goemans and Williamson for MAX-CUT.

We will need the following two “ingredients, discussed last lecture:

1. The Unique Games Conjecture: for allδ > 0, there is a sufficiently largem such that, if
|Σ| ≥ m, then Gap-Unique-Label-Cover(Σ)1−δ,δ is NP-hard.

2. The Majority Is Stablest Theorem: Let−1 < ρ < 0, ε > 0. Then,∃τ > 0, C < ∞, such
that if f : {−1, 1}m → [−1, 1] satisfies

Inf≤C
i (f) :=

∑

|S|≤C,S3i

f̂(S)2 ≤ τ

for all 1 ≤ i ≤ m, then we have

1

2
− 1

2
Stabρ(f) =

1

2
− 1

2

∑
S

ρ|S|f̂(S)2 <
cos−1 ρ

π
+ ε.

In the remainder of this lecture, we show the following:

Theorem 1.1. The Unique Games Conjecture implies that∀ − 1 < ρ < 0 andε > 0, Gap-MAX-
CUT1−ρ

2
−ε, cos

−1 ρ
π

+ε
is NP-hard.

Remark 1.2. Recall that this result is optimal, because the Goemans-Williamson algorithm matches
the above parameters (without theε). In particular, by takingρ = ρ∗ ≈ −.69, we can conclude
that .878-approximating MAX-CUT is NP-hard.

To begin the proof of Theorem1.1, let τ andC be the parameters we get from Majority Is
Stablest, usingρ andε/2. With these in hand, define

δ =
ετ 2

8C
.

Now by takingm := |Σ| large enough, we can use the Unique Games Conjecture to assert that
Gap-Unique-Label-Cover(Σ)1−δ,δ is NP-hard. We will now give a reduction from this Gap-ULC
problem to Gap-MAX-CUT.
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First try at a reduction. The instance of ULC is a bipartite graphG with vertex setV andW .
The “first try” one would naturally think of for a PCP/reduction for MAX-CUT is the following:
First, expect a long-code of the label of each vertex inV in W in the “proof”. Equivalently,
associate to each vertexv a block of vertices identified with{−1, 1}m, so that a cut in the resulting
graph yields a boolean functionfu : {−1, 1}m → {−1, 1} for eachu ∈ V ∪W . The natural try
for a test here (i.e., a natural definition for the edges in the graph we construct) is:

• Pick an edge(v, w) in G at random. Call the supposed long-codes of the vertices’ labelsfv

andfw.

• Let π denote the permutation given by the constraint on the edge.

• Pick x ∈ {−1, 1}m uniformly at random, and pickµ ∈ {−1, 1}m according to the1−ρ
2

-
biased distribution.

• Testfv(x) 6= fw(xµ ◦ π).

Herex ◦ µ denotes the string(xσ(1), . . . , xσ(m)).
However, there is an immediate flaw with this reduction — the graph constructed is bipartite!

In particular, a “cheating prover” could make all of thefv functions forv ∈ V identically1 and all
of thefw functions forw ∈ W identically−1. This obviously does not correspond to any useful
labeling of the original Label-Cover graph, and yet it passes the test with probability 1!

To get around this problem, we use a slightly more subtle reduction.

The actual reduction. In our actual reduction we will only require long-codes for theW ver-
tices; we will use these to, in a way, “infer” supposed long-codes for theV vertices.

The 6= test we will use is the following:

• Pick a vertexv ∈ V uniformly at random andtwo random edges based atv, say(v, w) and
(v, w′). Let fw, fw′ : {−1, 1}m → {−1, 1} denote the supposed long-codes forw andw′.

• Let π andπ′ be the permutations associated with the constraints on the two edges(v, w) and
(v, w′).

• Pick x ∈ {−1, 1}m uniformly at random, and pickµ ∈ {−1, 1}m according to the1−ρ
2

-
biased distribution.

• Testfw(x ◦ π) 6= fw′((xµ) ◦ π′).

We will now analyze the completeness and soundness of this test.
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2 Completeness of the reduction

Suppose the Unique-Label-Cover instance has an assignmentσ : (V ∪ W ) → Σ satisfying a
(1 − δ)-fraction of the edge-constraints inG. Now suppose eachfw is a proper long-encoding of
σ(w); i.e., it is theσ(w)th dictator function.

The test generates two edges(v, w) and(v, w′). By the left regularity of the graphG, each edge
is, individually, a uniformly random edge. Hence by the union bound, with probability≥ 1 − 2δ,
σ satisfies the constraint on both edges.

So suppose both edges are satisfied byσ. What is the probability the test succeeds? By defini-
tion of fw, we have

fw(x ◦ π) = (x ◦ π)σ(w) = xπ(σ(w)).

Sinceσ satisfies the edge(v, w), we haveπ(σ(w)) = σ(v). Similarly, we have

fw′((xµ) ◦ π′) = ((xµ) ◦ π′)σ(w′) = (xµ)π′(σ(w′)),

andπ′(σ(w′)) = σ(v) as well. So the test ends up testing

xσ(v) 6= (xµ)σ(v).

With the random choice ofx andµ, this happens iffµσ(v) = −1. This happens with probability
precisely1−ρ

2
.

Overall, we can conclude that the probability the test succeeds is at least(1−2δ)· 1−ρ
2
≥ 1−ρ

2
−ε

(using the fact thatε > 2δ).
This completes the proof of the completeness claimed in Theorem1.1.

3 Soundness of the reduction

As usual, we will prove the contrapositive of the soundness condition. To that end, suppose that
the supposed long-codes{fw} are such that the test passes with probability greater thancos−1 ρ

π
+ ε.

We will show how to “decode” these supposed long-codes into an assignmentσ : (V ∪W ) → Σ
for the original ULC graphG which satisfies at least aδ fraction of the constraints.

The first step is the standard “averaging” argument, with respect to the initial random choice
of v ∈ V : Specifically, since the overall test passes with probability at leastcos−1 ρ

π
+ ε, there must

be at least anε/2 fraction of thev’s such that the test, conditioned onv, passes with probability
at leastcos−1 ρ

π
+ ε/2. (For otherwise, the test would succeed with probability less than(ε/2) · 1 +

(1− ε/2) · ( cos−1 ρ
π

+ ε/2) < cos−1 ρ
π

+ ε.) Let us call suchv’s good.
The next step is to write down the test’s success probability. For this purpose, let us imagine

that in the first step of the test we have picked a goodv. (This happens with probability≥ ε/2.)
The subsequent success probability is then:

E
w,w′

[E
x,µ

[1
2
− 1

2
fw(x ◦ π)fw′((xµ) ◦ π′)]]

= 1
2
− 1

2
E
x,µ

[ E
w,w′

[fw(x ◦ π)fw′((xµ) ◦ π′)]].
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We now make the following definition:

Definition 3.1. For everyv ∈ V , define the functiongv : {−1, 1}m → [−1, 1] by setting

gv(y) = E
w∼v

[fw(x ◦ πv,w)].

Herew is chosen to be a random neighbor ofv, andπv,w is the bijection on the edge-constraint
(v, w).

The idea behind this definition is that if all thefw’s were proper long-codes of labels, each of
which was consistent with a label forv, thengv would be the long-code of that consistent label.
Continuing our above calculation, we have that the success probability of the test, conditioned on
having chosenv first, is

1
2
− 1

2
E
x,µ

[gv(x)gv(xµ) = 1
2
− 1

2
Stabρ(gv).

We are now in good shape. Assumingv is a good vertex, we have that the above quantity is at
leastcos−1 ρ

π
+ ε/2. But then we can apply the MIS Theorem to show thatgv must have at least one

coordinate with large,C-degree influence.
In particular, at a more intuitive level,gv must look vaguely like somejth dictator. We will

decodev to that label,j. Further, note thatgv is an average of supposed long-codes (after appro-
priate permutations). Ifgv looks a little like thejth dictator, then we can show it must be that at
least a small fraction of thew’s neighboringv look a little like theπ−1

v,w(j)th dictator. Hence, if we
list-decode allfw’s to the set of dictators they vaguely resemble, and then pick at random from this
list (we will also show this list is small), then there’s at least a slight chance of gettingπ−1(j).

Let us make this intuition rigorous. We know from the MIS Theorem that for every goodv,
there is at least one coordinatej = jv such that

Inf≤C
j (gv) ≥ τ. (1)

We will set σ(v) = jv in the overall assignmentσ we are constructing. As for thew’s in W ,
sinceInf≤C

j (gv) refers to the Fourier expansion ofgv, let’s work out what this is. We havegv =
avgw∼v fw ◦ πv,w. Now

fw =
∑

S

f̂w(S)χS

⇒ fw ◦ π =
∑

S

f̂w(S)(χS ◦ π)

=
∑

T

f̂w(π−1(T ))χT .

Therefore, we conclude that

gv =
∑

T

(
avg

w
f̂w(π−1

v,w(T ))

)
χT .
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Having computed the Fourier expansion ofgv, let’s examine (1):

τ ≤ Inf≤C
j (gv)

=
∑

|S|≤C,S3j

ĝv(S)2

=
∑

|S|≤C,S3j

(
E
w
[f̂w(π−1(S))

)2

≤
∑

|S|≤C,S3j

E
w
[f̂w(π−1(S))2] (Cauchy-Schwarz)

= E
w
[

∑

|S|≤C,S3j

f̂w(π−1(S))2]

= E
w
[Inf≤C

π−1(j)(fw)].

Thus by another averaging argument, we can conclude that at least aτ/2 fraction ofv’s neighbors
w haveInf≤C

π−1
v,w(j)

≥ τ/2.

We now want to “list-decode” eachfw into

Sw := {k : Inf≤C
k (fw) ≥ τ/2}

and chooseσ(w) randomly from this set. Assuming this set is always not too large — say, at
mostR in size — then we’re happy. The reason is that in this case, the expected fraction of ULC
constraintsσ satisfies will be at least

ε

2
· τ

2
· 1

R
.

The justification of this is that we imagine that bothσ is chosen at random and that(v, w) is chosen
as a random edge. The first term above is the probability thatv is good. The second term is the
probability thatw is one of the neighbors ofv with C-degree influence in theπ−1(jv) coordinate of
at leastτ/2. The final term is the probability that theπ−1(jv) is chosen out ofSw in the construction
of σ.

Since we tookδ = ετ 2/(8C), we can show that there exists a labelingσ satisfying at least aδ
fraction of the constraints (and thus complete the proof) as soon as we can showR ≤ (2C)/τ .

This follows immediately from the following easy lemma:

Lemma 3.2. For anyh : {−1, 1}m → {−1, 1},
#{k : Inf≤C

k (h) ≥ η} ≤ C/η.

Proof. The following stronger inequality completes the proof:

m∑
i=1

Inf≤C
i (h) =

m∑
i=1

∑

|S|≤C,S3i

ĥ(S)2 =
∑

|S|≤C

|S|ĥ(S)2 ≤ C
∑

S

ĥ(S)2 = C.
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